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Abstract

Fitness function design is known to be a critical feature of the evolutionary-
robotics approach. Potentially, the complexity of evolving a successful
controller for a given task can be reduced by integrating a priori knowl-
edge into the fitness function which complicates the comparability of stud-
ies in evolutionary robotics. Still, there are only few publications that
study the actual effects of different fitness functions on the robot’s per-
formance. In this paper, we follow the fitness function classification of
Nelson et al. (2009) and investigate a selection of four classes of fit-
ness functions that require different degrees of a priori knowledge. The
robot controllers are evolved in simulation using NEAT and we investigate
different tasks including obstacle avoidance and (periodic) goal homing.
The best evolved controllers were then post-evaluated by examining their
potential for adaptation, determining their convergence rates, and using
cross-comparisons based on the different fitness function classes. The re-
sults confirm that the integration of more a priori knowledge can simplify
a task and show that more attention should be paid to fitness function
classes when comparing different studies.

1 Introduction

Evolutionary robotics [16, 1] emerged with great early success and is meanwhile
struggling to scale to more complex tasks. Recent reports on new methods such
as novelty search [9, 10] and multi-objective evolution combined with methods
generating behavioral diversity [12, 13, 3] seem to have high potential. Also
the new emerging field of embodied online onboard evolution [5, 21, 8], that fo-
cuses on implementing evolutionary robotics as an embodied distributed system



directly operating on a group of robots, is encouraging. Still, in all of these ap-
proaches the overall challenge of maximizing task complexity while minimizing
necessary a priori knowledge persists. The idea of using little a priori knowledge
in the design of either a behavioral distance measure or of a fitness function
is motivated by a key advantage of evolutionary computation—it is a black-
box optimizer [4]. As such, evolutionary computation is particularly suited for
problems that are not well understood. The problem of defining a robot con-
troller that generates a desired, reliable, and adaptive behavior is of that kind.
However, in research of evolutionary robotics it seems to be tempting to put
an effort in fitness function design. In preliminary experiments the researcher
learns about specific features of the considered task, that is gaining a priori
knowledge, and might consciously or unconsciously incorporate that knowledge
into the fitness function. However, in an application of evolutionary robotics we
would like to minimize the need for doing preliminary experiments and having
to interpret them.

Nelson et al. [14] focus on that problem. They define the quality of an
evolutionary-robotics approach as twofold: “the success of research is measured
in the difficulty of tasks investigated, and the amount of a priori information
needed to generate successful evolution of controllers capable of performing those
tasks.” While there is definitely a competition for more complex tasks in the
community, the latter criterion of minimizing a priori knowledge seems neglected
sometimes. In particular, a competition of minimizing a priori knowledge for
similar tasks seems to be absent in evolutionary robotics literature except for
a few directly related publications [17, 15] and a few other works that study
fitness function design with strong focus on special domains [7, 6, 11]. It is also
suggested by Nelson et al. [14]: “one particular ER effort might be considered
an improvement over an earlier work if the later work required the use of much
less a priori knowledge on the part of the researchers to evolve controllers for a
similar task.” In this paper, we report early results to fill this gap. An obvious
challenge in this endeavor is to measure a priori knowledge. We follow the
classification of fitness functions of Nelson et al. [14] to solve that issue. They
define seven fitness function classes that are sorted according to the incorporated
a priori knowledge. Here we focus on four of them: behavioral fitness functions
(a priori knowledge incorporated: high), functional incremental fitness functions
(moderately high), tailored fitness functions (moderate), and aggregate fitness
functions (low). Unfortunately, classifying fitness functions according to this
scheme is fuzzy and to some extent subjective. Hence, the challenge remains to
define an objective measure of a priori knowledge, which is not solved within
this work. However, the following study still allows for a structured approach.
In alternative to the fitness function classification of Nelson et al. [14], there is
also the classification of Nolfi and Floreano [16]. They define a 3-dimensional
space along three axes: functional-behavioral, explicit-implicit, and external-
internal. Relevant here is mostly the functional-behavioral aspect that classifies
whether the fitness function defines detailed features (functional) or whether
the fitness function defines abstract features (behavioral). Also the dimension
explicit-implicit is of interest as it classifies basically the complexity of the fitness



function (e.g., number of components). We prefer to use the approach of Nelson
et al. [14] because it allows for a more detailed classification.

In this paper, we investigate a selection tasks and fitness functions. Over
a month of computational time for the simulated evolutionary runs was in-
vested. The results indicate a clear trend across the four investigated fitness
function classes. Nonetheless, our findings are not easily generalized to all pos-
sible scenario of evolutionary robotics which cannot be achieved by giving a
finite number of examples. However, a reliable mathematical formalism, which
would allow to prove the generality of any result in evolutionary robotics, is also
out of reach. Hence, our objective is not to naively generalize from our results.
Instead we want to point to the significance of a priori knowledge and we want
to show that more research has to be done to fill the benchmarking gap in the
literature on this issue.

This paper is structured as follows. First, the fitness function classes are
introduced in Sec. 2. Then, for each experimental task these fitness function
classes are instantiated and explained (Sec. 3). After designing the experiments
and simulation, in Sec. 4 the performance of the robot is investigated based
on post-evaluation metrics, and the final ranking of the fitness functions is
presented. We conclude with a short discussion and options for future work.

2 Fitness function classes
following Nelson et al.

Our study is based on the fitness function classes as defined by Nelson et al. [14].
The idea of this classification is to sort fitness functions according to the a priori
knowledge that is involved in their design. As mentioned above, an objective
measure of a priori knowledge is missing which complicates the classification of
particular fitness functions. Still, it seems a viable approach based on the best
methods that have been published so far. The classes in increasing order of
required a priori knowledge are: aggregate, competitive and co-competitive,
environmental incremental, tailored, functional incremental, behavioral, and
training data fitness functions. In the following, we focus on the four classes
only: aggregate fitness functions, behavioral fitness functions, tailored fitness
functions, and functional incremental fitness functions.

Aggregate fitness functions (AFF) have the lowest degree of a priori knowl-
edge and evaluate only what is achieved, that is, the completion of the task as
the metric to select the best robots. The procedure of how the robot accom-
plishes a task is irrelevant. For example, the locomotion task of a bipedal robot
can be described by an AFF that relies on traveled distance only. Such fitness
functions are easy to design because they require little a priori knowledge and
they are of low complexity. The drawback is obviously that there may be boot-
strapping problems and there is no guidance for evolution through intermediate
solutions.

Behavioral fitness functions (BFF) measure how the task is solved. De-



signing BFF hence requires a priori knowledge about options how the task can
be solved. This way BFF also predetermine potential solutions and possibly
exclude counterintuitive options. The design process for this type of fitness
functions is relatively complex because it either requires good knowledge about
effective solutions to the task or preliminary experiments that help to determine
potential solutions.

Tailored fitness functions (TFF) combine elements of behavioral and aggre-
gate fitness functions, that is, they combine BFF and AFF. Tailored fitness
functions have a higher degree of complexity than AFF and BFF as they have
several components that are typically multiplied or summed.

Functional incremental fitness functions (FIFF) are sets of fitness functions
that are applied separately and gradually. The functions are applied in a series of
distinct stages. The whole evolutionary process is divided into multiple intervals
of generations in which only one fitness function holds. Therefore the number
of fitness functions determines the number of such stages as well.

For the following experiments we need to define a particular fitness function
for each task and class. All results are hence task-dependent and depending on
the particular, chosen fitness function. We are interested in general conclusions,
of course, and try to maximize the potential for generalizability by investigating
three different tasks. Still, one could argue that our selections of fitness functions
are beneficial for a certain fitness function class in individual cases and, hence,
introduce a bias. To maximize the comparability of our examples, we define a
structured and elaborated design strategy. First, the BFF are designed, second,
the AFF. Then combinations of AFF and BFF define by design pattern the
TFF. TFF combine AFF and BFF by multiplication. We make individual design
decisions only for FIFF, whether the first stage starts with AFF followed by a
phase with BFF or vice versa. Hence, the results within each task are easily
comparable because they rely on the same fitness function components.

Besides the degree of a priori knowledge, the fitness functions can also be
ordered according to their complexity. We do that in a simplistic approach.
AFF have the simplest design process by considering task completion only. In
contrast, BFF are complex to design. The remaining two classes are even more
complex because they contain AFF and BFF as components (assuming an ap-
plication scenario where we would need to define TFF and FIFF from scratch
without using predefined AFF and BFF). FIFF requires the decision about the
sequence of the components in addition to the component selection. Hence, it is
considered as the most complex fitness function here. The order of complexity,
starting with the lowest, is: AFF, BFF, TFF, and FIFF.



3 Implementation and task-
specific fitness functions

We use the open-source simulator Player/Stage! to simulate a robot with dif-
ferential drive that has 8 proximity sensors (6 to the front and 2 to the back)
and 2 ambient light sensors (one at the front and one at the back). Our im-
plementation is based on MultiNEAT [2] which is a portable software library
implementing NEAT, a popular approach to optimize and complixify artificial
neural networks [19, 20]. Using NEAT we start with simple network topologies
that are then complexified during the evolutionary run. This process of com-
plexification simplifies the approach to evolve controllers for tasks of different
complexity. We evolve neural networks with 8 input neurons for the first task
(obstacle avoidance) and 10 inputs for the two other tasks: 8 inputs s; repre-
senting the input from the proximity sensors and two inputs (I; and Ip,) from
the light sensors. There is a variable number of neurons on the hidden layer
based on NEAT and two output neurons (speed of left and right wheel).

The total computation time was more than 112 days (30 generations X
population of 30 x 3 evaluations with different initial positions x 3 repetitions
each x 3 tasks x 4 fitness functions x 10 evolutionary runs x about 10 seconds
for each evaluation) on evolving the best controllers even with a small number
of generations. Therefore, we could run the experiments for 30 generations with
a population size of 30, see Table 1 for all NEAT parameters. The controllers
are evaluated for three different initial positions with different rotations. The
simulation is non-deterministic due to variant time intervals between sensor
readings in Player/Stage. Thus, the robot controller is simulated three times
for each of these initial positions, totaling in nine evaluations. The assigned
fitness is the average of these nine evaluations. All tasks use the same simulated
rectangular arena of dimensions 2m x 2m, see Fig. 1a. The three initial positions
are depicted with blue circles.

The tasks can be classified into three categories: movement (e.g., locomotion
with obstacle avoidance), homing (e.g., goal homing), and object manipulation
(e.g., object pushing) [18]. In the following experiments we focus on two of
these categories (i.e., movement and homing) and instantiate three simple tasks:
obstacle avoidance from movement category, goal homing, and periodic goal
homing from the homing category. Our selection was motivated by requiring a
coherent order of complexity among the tasks. This is guaranteed because the
tasks of higher complexity contain the tasks of lower complexity as subtasks.
Collision avoidance is part of the two other tasks. In the case of periodic goal
homing, the robot needs to avoid the obstacles to reach a certain goal, hence,
containing both other tasks. Next, we define the fitness function for each class
and task based on the above mentioned design strategy.

1ht‘cp ://playerstage.sourceforge.net
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Parameter Value

PopulationSize 30
CrossoverRate 0.75
DynamicCompatibility True
Mutate WeightsProb 0.9
CompatTreshold 2.0
Weight MutationMaxPower 5.0
YoungAge Treshold 15
YoungAgeFitnessBoost 1.1
OverallMutationRate 0.33
WeightReplacementMaxPower 5.0
OldAgeTreshold 31
Mutate WeightsSevereProb 0.5
MinSpecies 5
WeightMutationRate 0.75
MazxSpecies 25
MazxWeight 20
SurvivalRate 0.25
MutateAddNeuronProb 0.05
Roulette WheelSelection True
MutateAddLinkProb 0.05
RecurrentProb 0.1
MutateRemoveLinkProb 0.05

Table 1: Used NEAT parameters.

3.1 Obstacle avoidance (OA)

One of the simplest tasks in evolutionary robotics is to evolve a collision avoid-
ance behavior [16]. Avoiding collisions is of particular relevance in embodied
evolution [22]. The idea is that the robot covers as much distance as possible
(otherwise staying stopped is an optimal collision avoidance behavior) while
minimizing collisions with walls and objects.

For this task, BFF is based on the speed of both wheels and the inputs from
the proximity sensors. This type of fitness function rewards behavioral features,
that is, how the task is solved. First, the faster the robot moves the better
it accomplishes the task. The first component is the average of the two wheel
speeds averaged over time: 7; = % > ¢ vi(t) and similarly for ©,. Furthermore,
maximal distance is covered by moving straight, that is, by avoiding rotations.
The difference between the two speeds is minimized by defining (1 —+/|9; — o,|)
(square root gave best results in preliminary tests). The last component is
% ming (min; (s;(t))) and rewards to stay far from obstacles. If any sensor detects
an obstacle to be closer than an allowed distance, that is interpreted as a collision
which needs to be penalized heavily. The threshold 6 returns an extreme penalty
of § = 103 if at least one collision occurred during the evaluation. Otherwise,
we have 6§ = 1. The behavioral fitness function for collision avoidance is defined
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For AFF, the focus is on task completion. Here we simply define the aggre-
gate fitness function by the distance § that the robot traveled during evaluation,

FpA =5 )

In the case of FIFF, a set of fitness functions is required. Following our
design strategy we reuse the behavioral and aggregate fitness functions (eqgs. 1
and 2), divide the evolution into two phases, and define the functional incre-
mental fitness functions as a 2-tuple by

Fg;)fllAv — {Fgfc%llAv7F§§llAv}' (3)

We define TFF by the product of the behavioral and aggregate fitness func-
tion

collAv __ rrcollAv rcollAv
Fﬁff — 4'bff Faff . (4)

3.2 Goal Homing (GH)

Goal homing is also a frequently investigated task in evolutionary robotics [14].
While in the collision avoidance task the robot’s direction is not specified, the
robot is now required to move as close as possible to a light source that is located
in the middle of the arena. Finding the best path to the highest light intensity
is the goal in this task. In simulation the light intensity is proportional to the
inverse of the squared distance d between the robot’s position and the arena
center 1

I x 7 (5)
For all the following fitness functions, collisions are penalized by introducing a
discount to the accumulated light intensity reward. For the time steps after the
collision the light intensity is rewarded only by one half of the intensity.

In this task, the robot should approach the light quickly and then stay close
to the light source. Hence, the robot should move fast, when it is far from
the light, and it should stop moving, when it is close to the light. Hence,
we reward the accumulated difference between intensity and traveled distance
over all simulation steps. Based on empirical experience we add a weight ¢ =
5 to increase the impact of light intensity relative to traveled distance. The
behavioral fitness function is defined by

Fig = _lel(t) - Ad(t)], (6)

whereas I(t) = (I + I,) is the average of the detected light intensity in sim-
ulation step ¢ and Ad(t) is the robot’s current speed. For the case of AFF, a
simple function based on accumulated light intensity is defined by

FE = "1(). (7)



For FIFF, we define two objectives: first approach the light and second avoid
collisions. We reuse function FSg'AY = § from eq. 2 (§ is traveled distance).

Fgt =" 1(1), (8a)
t
FE? = Fg"™ =6 (8b)

The tailored fitness function is the product of behavioral and aggregate fit-
ness function, defined by

FEr = (Z I(t)) (Z\d(t) - Ad(t)|> . (9)

t

3.3 Periodic Goal Homing (PGH)

In periodic goal homing, the robot not only has to approach the light, but
has to maximize the distance to the light again once it has been reached, and
has to repeat that periodically. The robot should increase and then decrease
the light intensity as much as possible. We divide the arena into two areas.
A ring-shaped area A; (see Fig. 1c¢), containing all positions with intensities of
0.3 < I(t) < 0.7 and an area Ay that contains the remaining parts of the arena
(I(t) > 0.7, I(t) < 0.3). The robot should traverse area A; as fast as possible.
In addition, obstacle avoidance is imposed because the evaluation is stopped
whenever the robot hits an obstacle. We define the behavioral fitness function

FRE =" o(t)Ad(t), (10)

with ¢(t) = —1 for 0.3 < I(t) < 0.7 and ¢(t) = 41 otherwise. ¢ penalizes
spending time on A; and Ad(t) is the robot’s speed at time ¢, hence rewards
moving fast on A,.

For the case of AFF, we need a global feature that allows to determine
whether the robot accomplishes its task well. From a number of options rang-
ing from frequency analysis to measuring wavelengths, we pick the easily imple-
mented option of the standard deviation o that is directly calculated from the
data acquired during the evaluation. Here, o is a statistical function that gets
the set of all light intensities I = {I(¢)|for all time steps ¢} as input and returns
the standard deviation. A big standard deviation indicates a good periodic goal
homing behavior. We define the aggregate fitness function

FREh = o(I). (11)

We select two fitness functions to define the FIFF. Following our design
strategy we would use the BFF and AFF but experiments showed that for this
task that approach is ineffective (data not shown). Instead, we choose two AFFs
of previous tasks (goal homing and collision avoidance), one rewards maximizing



light intensity the other rewards movement.
FRgt = Fgt =) 1), (12)
t
FREMZ — peollAv — 5 (12b)

This way, the robot is assumed to move toward the light, but should keep
moving. This is a rather rough way of defining the task but we follow our design
strategy of reusing fitness functions for FIFF and not defining new components.

The tailored fitness function is the product of the behavioral and aggregate
fitness functions, defined by

FRe" = PR FOE". (13)

These twelve fitness functions were used to evolve robot controllers for these
three tasks. Our observations of the robots’ behaviors indicate that the obtained
best controllers were able to achieve a periodic behavior.

4 Post-evaluation and readaptat-ion tests

In the evolutionary runs with the above described twelve fitness functions we ob-
tain a best controller from each evolutionary run. The evolutionary algorithm is
effective and hence they are best relative to their fitness function for which they
have been evolved. However, the question that we have to answer is how well
they perform according to an objective performance measure because we want to
know the best fitness function for each task. This is in itself a difficult problem,
in fact, a self-referential problem because this objective performance measure is
itself, of course, a fitness function. Therefore, we do a cross-comparison of each
controller with each of the three fitness functions and for each task. Our aim
is to come up with a conclusion about the effectiveness of our different fitness
functions and in the end of the different fitness function classes. Three types of
post-evaluations and adaptation tests were done. First, the best controllers were
post-evaluated 30 times with each of the fitness functions (Sec. 4.1). Second, for
the last populations the evolution was resumed with each of the fitness functions
for a few generations to test for evolutionary adaption (Sec. 4.2). Third, for the
last populations the evolution was resumed for each of the fitness functions in
a new environment to test re-adaptation (walls added, Sec. 4.3).

4.1 Post-evaluations in cross-comparison

We have three tasks and four classes of fitness functions that help in evolving
best controllers that accomplish each of these tasks. For each task, the best
controllers are post-evaluated with the same environment again, but this time we
evaluate them with all fitness functions. The idea is to do a full cross-comparison
and to find the most effective fitness function class. FIFF cannot be investigated
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Figure 1: Simulated robot arenas, logically defined light intensity areas for Pe-
riodic Goal Homing (PGH), fitness of best controllers for Obstacle Avoidance
(OA, 2nd row), Goal Homing (GH, 3rd row), and PGH (4th row) obtained by
evolving with Aggregate Fitness Function (AFF, 1st boxplot in each figure),
Behavioral Fitness Function (BFF, 2nd boxplot), and Tailored Fitness Func-
tion (TFF, 3rd boxplot) but post-evaluated with AFF (1st column), BFF (2nd
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(k) PGH, fitness BFF

column), and TFF (3rd column).
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here because that would require to resume the evolution of populations to allow
for a useful comparison, which is left for Sec. 4.2 and Sec. 4.3.

The results of our cross-comparisons between all tasks are shown in Fig. 1
(rows 2, 3, and 4). For each task (rows) we take the best controllers evolved
using AFF (1st column), BFF (2nd column), and TFF (3rd column) and post-
evaluate them against AFF (1st boxplot in each diagram), BFF (2nd boxplot),
and TFF (3rd boxplot). For example, Fig. 1d shows the results for the best
controllers evolved with AFF which are post-evaluated against AFF, BFF, and
TFF. We compare the three fitness function classes based on their rank in each
test. In order to rank the results, that were achieved by the different fitness
functions, we applied significance tests based on the Wilcoxon rank sum test.
Significantly different results (p < 0.05) receive different ranks while insignificant
results receive the same rank. In the same example (Fig. 1d), lines with asterisks
denote the significances in the data. All pairs of fitness functions are significantly
different in this case. AFF is ranked the highest followed by TFF, while BFF is
ranked the lowest. The first column in Tab. 2 represents the ranking in Fig. 1d.
The second and third columns belong to the comparisons in Fig. 1e and Fig. 1f,
respectively. After summing the ranks, the forth column denotes the overall
ranking of the three fitness functions for obstacle avoidance. Tab. 3 shows the
overall ranks for all of the tasks. By summing the ranks we see that TFF in
total is ranked best. AFF and BFF compete basically on the same level but
with a slight advantage for BFF (rank sum better by one).

4.2 Resuming evolution in the same environment

Next, we test how the populations, that were evolved with different fitness func-
tions, adapt to new fitness functions when we resume evolution. We take the last
population from each evolutionary run and resume evolution for 10 generations.
This also allows to include the FIFF using both functions for 5 generations each.

For each fitness function we have a population of the last generation for
each evolutionary run. We take these populations and continue to evolve them.
For example, we take a population evolved with AFF and continue to evolve it
for 10 generations with AFF. However, we also take a population evolved with
AFF and resume evolution for 10 generations with BFF and similarly for all
other cases of the cross-comparison. From each of the final populations after
10 generations we take the best controller for the following analysis.

Fig. 2 gives the results for tasks OA and PGH only. Taking into account
also the results for GH (not shown), Tab. 5 is computed for all tasks and fitness
functions. As shown in the overall column of this table, TFF is best followed
by BFF, AFF, and FIFF.

4.3 Re-adaptation, convergence rate, and full comparison

In the last part of this study, we test the potential for re-adaptation in the
evolved populations. We evolve the population of controllers for 30 generations
and then resume the evolution of the populations for another 10 generations in

11
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Figure 2: Best controllers for Obstacle Avoidance (OA, a-d) and Periodic
Goal Homing (PGH, e-h) obtained by evolving with Aggregate Fitness Func-
tion (AFF), Behavioral Fitness Function (BFF), and Tailored Fitness Function
(TFF) but then resume evolution with AFF, BFF, and TFF.

a changed environment (two walls added, shown in dashed pattern, Fig. 1b).
The evolution is resumed with the same fitness function that was used for evo-
lution before (no cross-comparison). The robot controllers have to re-adapt to
accomplish their tasks. To check the ratio of re-adaptation after the change in
the environment, we consider the median of the best fitness for each generation.
by is the median of the best controllers’ fitness from 10 evolutionary runs for

12



FF | AFF_BFF TFF | Overall

AFF 1 3 3 3
BFF 3 1 2 2
TFF 2 2 1 1

Table 2: Detailed ranking of post-evaluation shown in Fig. 1d, e, and f only for

obstacle avoidance.

FF \ OA GH PGH \ overall

AFF | 3 2 2 3
BFF 2 3 1 2
TFF 1 1 1 1

Table 3: Overall ranking of post-evaluation.

generation g. To compare the maximum median values over generations before
(g < 30) and after the change (g > 30), we define the ratio

-1

B = 30<4240 (by) (ogmgag}g,o (bg)> ' (14)
We are interested in finding fitness functions that score high on R and hence
evolved adaptive controllers. For this test we give no boxplots but only the
ranks, see Tab. 6. The overall ranks show that TFF is best in adapting to the
new environment followed by BFF, AFF, and FIFF.

Finally, in a fourth test we investigate the rate of convergence because we
are interested in the dependence of the optimization process speed on the fitness
function classes. We define a visual evaluation of graphs to assign a value to
the quality of convergence rate. For the measured functions Fest(g) of best
fitness over generations g, we measure the area below the curve and relate it to
the overall area of the rectangle defined by (0,0) and (gmax, Finar), which gives
Gmax X Fpoax. Therefore, the convergence rate is defined as

1 Imax

R, = JaTs > Foest(9)- (15)

Jmax X best g—1

The investigation of all evolutionary runs gives the information in Tab. 4 that
shows AFF as the best, followed by BFF, and TFF (FIFF not considered here).

FF \ OA GH PGH \ overall

AFF | 2 1 1 1
BFF 1 2 2 2
TFF | 3 3 3 3

Table 4: Overall ranking of convergence rate.
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FF \OA GH PGH \ overall

AFF 2 2 4 3
BFF 2 4 1 2
TFF 1 1 2 1
FIFF 3 3 3 4

Table 5: Overall ranking of re-evolution.

FF \OA GH PGH \ overall

TFF 1 1 3 1
BFF 3 2 2 2
AFF 4 3 1 3
FIFF | 2 4 4 4

Table 6: Overall ranking of re-adaptation.

A summary of all results based on ranks from all of the tests is shown in Tab. 7.
What we refer to as ‘simplicity’ in Tab. 7 is the inverse of complexity as de-
fined in Sec. 2. We find that fitness function classes that incorporate a lot of
a priori knowledge, such as TFF and BFF, achieve higher performance across
different tasks and across several performance features (post-evaluation, adap-
tation). The convergence rate of AFF is good but only because they achieve
lower maximal values than BFF and TFF.

# | post- | resumed re- conv. | simplicity
eval. | evolution | adapted rate

1 | TFF | TFF TFF AFF | AFF

2 | BFF | BFF BFF BFF | BFF

3 | AFF | AFF AFF TFF | TFF

4 | - FIFF FIFF - FIFF

Table 7: Final ranking of the fitness functions.

5 Conclusion

We have presented a study on how a priori knowledge in the design of the
fitness function influences the performance of the evolutionary algorithm in
evolutionary robotics. Although we face the problem of fuzzy and subjective
definitions of a priori knowledge and fitness function classifications [14], we still
get a clear result for the proposed examples. Fitness functions that include a
high degree of a priori knowledge (here TFF and BFF) influence the performance
positively. They help to simplify the evolution of a successful controller and
hence simplify the chosen task. However, we also know that incorporating a high
degree of a priori knowledge foils the dominant idea of evolutionary computation
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as a black-box optimizer. Therefore, there is a problem of comparability in
evolutionary robotics. While there is a competition for more and more complex
tasks in the community, more attention could possibly be paid to the amount of
a priori knowledge included in the design of fitness functions. More studies on
the same task with an effort on minimizing a priori knowledge could possibly be
done to have a competition for minimal a priori knowledge, too. Furthermore,
we require a more precise and objective measure of a priori knowledge.

Our study focuses on the standard approach of evolutionary robotics that
requires the definition of a fitness function. There are also recent alternative
approaches, such as novelty search [10] and multi-objective behavioral diver-
sity [12, 13], that either substitute the fitness function with a measure for be-
havioral diversity or add behavioral diversity as an additional objective. Also
called ‘task-agnostic’ approaches as discussed in [4]. However, the design of the
behavioral distance measure might require an effort similar to the standard fit-
ness function design challenge. For example, Mouret and Doncieux [13] discuss
this analogy between fitness function design and the design of a measure for
behavioral diversity: “More importantly, novelty search critically depends on a
good behavior characterization to create a gradient. Researchers in ER used to
craft fitness function to create a perfect fitness gradient; novelty search users
have to craft the behavior distance to create a similar gradient. This last option
may be easier for some problems but eventually some distances will be hard to
define.”

In future work we plan to do a similar study also for measures of behavioral
diversity. In addition, we plan to extend the fitness function classification ap-
proach of Nelson et al. [14] to allow for a better motivation of chosen fitness
functions. Furthermore a collection of results for a diverse set of fitness functions
and measures of behavioral diversity for selected tasks, also including negative
results, could prove to be helpful for the field.
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