
ROS2SWARM - A ROS 2 Package for Swarm Robot Behaviors

Tanja Katharina Kaiser,1 Marian Johannes Begemann,1 Tavia Plattenteich,1

Lars Schilling,2 Georg Schildbach,3 and Heiko Hamann1

Abstract— Developing reusable software for mobile robots
is still challenging. Even more so for swarm robots, despite
the desired simplicity of the robot controllers. Prototyping and
experimenting are difficult due to the multi-robot setting and
often require robot-robot communication. Also, the diversity
of swarm robot hardware platforms increases the need for
hardware-independent software concepts. The main advantages
of the commonly used robot software architecture ROS 2 are
modularity and platform independence. We propose a new
ROS 2 package, ROS2SWARM, for applications of swarm
robotics that provides a library of ready-to-use swarm be-
havioral primitives. We show the successful application of our
approach on three different platforms, the TurtleBot3 Burger,
the TurtleBot3 Waffle Pi, and the Jackal UGV, and with a set of
different behavioral primitives, such as aggregation, dispersion,
and collective decision-making. The proposed approach is easy
to maintain, extendable, and has good potential for simplifying
swarm robotics experiments in future applications.

I. INTRODUCTION

Robot swarms [1] are decentralized systems in which
relatively simple robots solve tasks collectively. One of their
great advantages is the robustness of the system; there is no
single point of failure as the defect of some swarm members
will not prevent successful task execution.

A common software engineering challenge in mobile
robotics is the development of reusable robotic software,
which “is difficult primarily due to the variability in robotic
platforms” [2]. Software engineering challenges specific to
swarm robotics are “the lack of general tools for experimen-
tation”, “common ‘swarm libraries’ do not yet exist, and
reusing code is difficult owing to the lack of swarm-centric
development platforms” [3]. The arguably most prominent
effort in mobile robotics to push for common software
architectures and reusable code is the Robot Operating
System (ROS) [4]. While ROS [4] is widely used in both
single mobile robot applications and multi-robot systems,
it is rarely used for swarm robotics to date [5]. This is,
among other reasons, due to the central ROS master node
which counteracts the paradigm of decentralization in swarm
robotics. However, ROS 2 [6] replaces the central ROS
master node with a Data Distribution Service (DDS) as a
middleware and is thus decentralized. This change makes
ROS 2 interesting for swarm robotics research as it brings
about several advantages, such as easy reusability of code
on different robot platforms. Several works on distributed

1TKK, MJB, TP, HH are with the Institute of Computer Engineering,
University of Lübeck, Germany kaiser@iti.uni-luebeck.de

2LS is with the Institute of Robotics, University of Lübeck, Germany
3GS is with the Institute for Electrical Engineering in Medicine,

University of Lübeck, Germany

(a) Five TurtleBot3 Waffle Pis (b) Jackal UGV

Fig. 1. Two of the three used robot hardware platforms: (a) a swarm of
the ground mobile robot platform TurtleBot3 Waffle Pi from Robotis and
(b) a Jackal unmanned ground vehicle (UGV) from Clearpath Robotics.

multi-robot systems and robot swarms using ROS 2 were
recently published, ranging from robots that synchronize and
swarm [7], [8] over a toolbox for distributed control schemes
for heterogeneous multi-robot systems [9] to concepts for
large-scale scalable micro-aerial vehicle swarms [10].

In swarm robotics systems, both hardware and control
are usually kept simple relying on self-organization and
emergence [1]. Despite the simple reactive controllers of
individual robots, complex behaviors emerge due to the
collaboration between robots. There are several primitive
behaviors in swarm robotics, that are frequently used and
studied, such as aggregation (i.e., robots group in one spot),
dispersion (i.e., robots distribute while staying in contact),
and flocking (i.e., bird-inspired coordinated motion).

As ROS 2 allows for the reuse of code on various robot
platforms, a ROS 2 package providing such swarm behavior
primitives allows for an easy and rapid setup of swarm robot
experiments. We introduce ROS2SWARM, a ROS 2 package
that provides an easy-to-extend framework for and a library
of swarm robot behaviors for mobile robots. Included swarm
behaviors can be used out of the box with any ROS or ROS 2
compatible mobile robot platform that provides sensor data
via a scan message and sets the linear speed along the x-
axis and the rotational speed around the z-axis. Since we
are building on the modularity of ROS 2, new behaviors can
easily be added and used as modules to build more complex
behaviors.

In the next section, we discuss design patterns for collec-
tive behaviors as well as existing ROS and ROS 2 packages
for swarm robotics. Section III presents the structure and
implementation of ROS2SWARM and introduces the robot
platforms that are already supported. In Sec. IV, we show
the functionality and benefits of our ROS2SWARM package
in simulation and real robot experiments using the TurtleBot3



Burger, the TurtleBot3 Waffle Pi (see Fig. 1a), and the Jackal
UGV (see Fig. 1b) robots. Finally, we summarize our work
and conclude with an outlook on on-going and future work
that will be included in the package in Sec. V.

II. RELATED WORK

To our knowledge, we are the first to propose a ROS 2
package that implements modular and reusable design pat-
terns for swarm behaviors using a decentralized setup in
simulations and on real robot hardware. We were inspired
by several works on design patterns to facilitate the en-
gineering of distributed multi-agent systems when creating
the modular framework. De Wolf and Holvoet [11], for
example, consolidate best practices for engineering self-
organizing emergent systems in a catalog of design patterns
for decentralized coordination mechanisms, such as digital
pheromones. Fernandez-Marquez et al. [12] go one step
further by proposing modular and reusable design patterns
for bio-inspired mechanisms for self-organizing systems.
They organize patterns into three layers, including basic
mechanisms and two levels of composed patterns. Pitonakova
et al. [13] focus specifically on robot swarms by presenting
information exchange design patterns for the example of
foraging while other swarm tasks are left subject to future
work. Loosely inspired by these works, we create a structure
of basic and combined patterns that allows for the imple-
mentation of modular and reusable swarm behaviors in our
ROS2SWARM package.

Already existing ROS and ROS 2 packages for swarm
robotics applications do not create such a modular and
reusable framework, or they even rely on central compo-
nents. Most of the existing packages rely on ROS and its
central ROS master node. ROSBuzz [14], for example, inte-
grates the swarm-oriented programming language Buzz [3]
with ROS to ease the deployment of heterogeneous robot
swarms in the field. However, a global positioning system
is required. Similarly, the ROS programming framework
micros swarm framework [15] is inspired by the Buzz pro-
gramming language and provides abstractions and swarm
functions to facilitate the implementation of interaction and
communication between swarm members in swarm appli-
cations. CMUSWARM [16] is a full stack swarm archi-
tecture in ROS that allows for the design, deployment,
and evaluation of swarm algorithms. But the framework
relies on a centralized core layer for the deployment of the
algorithms to the swarm. Hrabia et al. [17] present a modular
and reusable ROS framework for self-organization in multi-
robot systems. Self-organization mechanisms are integrated
based on an adapted version of the bio-inspired design
patterns by Fernandez-Marquez et al. [12]. Other swarm
related ROS packages focus on providing swarm simulations.
swarm stage ros [18], for example, configures a swarm robot
scenario for a cleaning task in the Stage simulator auto-
matically, and swarm robot ros sim [19] provides a generic
swarm robot simulation platform for decentralized formation
control. Unlike all the previously described ROS packages,
CHOIRBOT [9] is based on ROS 2. It provides a toolbox

Node

AbstractPattern HardwareProtectionLayer

MovementPattern VotingPattern

AggregationPattern

DispersionPattern

...

VoterModelPattern

MajorityRulePattern

...

Fig. 2. UML diagram of ROS2SWARM’s package architecture. The
AbstractPattern class inherits from the standard ROS 2 node class. Move-
mentPattern and VotingPattern are subclasses of the AbstractPattern class
and differentiate implemented behaviors into patterns for robot movement
and patterns for collective decision-making. Left out of the pattern hierarchy
is the HardwareProtectionLayer that prevents collisions with obstacles.
Not shown are several utility classes for processing laser scan data, better
readability of state machines, and handling of common voting procedures
and standard ROS 2 processes.

for cooperative robots to facilitate the implementation of
optimization-based distributed control schemes, but requires
global position information of all robots. In contrast, our
approach of ROS2SWARM is decentralized as it relies on
ROS 2, does not require any global information, such as
robot positions, and allows for the easy implementation and
execution of swarm behaviors in simulations and on real
robots.

III. ROS2SWARM PACKAGE

ROS2SWARM1 provides a library of ready-to-use behav-
ioral primitives for swarm robotics applications that can
easily be extended. Following the key concept of distributed
control in robot swarms, the package and consequently the
swarm behaviors are executed on each robot autonomously
and independently. For some behaviors, data sharing between
robots is needed and implemented using global namespace
ROS 2 topics requiring all swarm members to be in the
same network. In the following, we introduce the general
package structure of ROS2SWARM, the pattern hierarchy
for the implementation of swarm behaviors, and how the
package can easily be used with different ground mobile
robots in the Gazebo simulator [20] and on real robots.

A. General Package Structure

ROS2SWARM consists of a main ROS 2 Python package
providing the swarm behaviors and an accompanying C++
package with custom ROS 2 message interfaces. The main
package is structured by a class hierarchy as shown in
Fig. 2. The AbstractPattern class serves as the basis for
the implementation of all swarm behaviors. We distinguish
between two different types of patterns: movement patterns,
which control the motion of the robot swarm, and voting
patterns, which implement collective decision-making. For
the voting patterns, additional ROS 2 message interfaces that
allow exchanging opinions between robots are provided by

1https://gitlab.iti.uni-luebeck.de/ROS2/ros2swarm. Currently available for
ROS 2 Dashing Diademata.



LiDAR

Pub

LaserScan
/scan

Hardware
Protection

Layer

Sub

Sub Pub
Twist

/cmd vel

Motors

Sub

Movement
Pattern

Sub

Pub
Twist

/drive commmand

Fig. 3. Communication between the ROS 2 nodes of ROS2SWARM using
the ROS 2 publisher/subscriber model when executing movement patterns.
Laser scan data from a LiDAR is used by the movement pattern to calculate
a drive command and by the hardware protection layer to check for potential
collisions. The hardware protection layer sends either the drive command
from the movement pattern or an adjusted command to avoid obstacles to
the robot’s motors. ROS 2 nodes are represented by circles and ROS 2
topics by ellipses. Publishers (Pub) and subscribers (Sub) are represented
by rectangles. Arrows indicate the data flow.

the accompanying C++ package. Both movement patterns
and voting patterns can be implemented as standalone basic
patterns or by combining multiple patterns into a combined
pattern. Termination conditions for each pattern can easily
be included, for example, stopping the execution of a pattern
until timeout. Hence, we obtain a modular package structure
that allows for reusing patterns.

The parameters of each pattern are set via YAML files
so that the behaviors can easily be adjusted for individual
applications. We include a set of these parameter files for
each robot platform (i.e., TurtleBot3 Waffle Pi, TurtleBot3
Burger, and Jackal so far) to enable easy switching between
different platforms. Patterns are executed independently for
each robot and can easily be started via launch scripts
that handle the start of all required ROS 2 nodes with the
specified parameterization. In addition, the launch scripts
remap ROS 2 nodes to a robot’s individual namespace,
where it is required to ensure correct data handling in
the swarm. Topics in the global namespace are only used
for essential neighbor-to-neighbor communication within the
swarm, for example, as required by voting patterns. In the
current setup of robot experiments with ROS2SWARM, a
robot has no information about the distance to a swarm
member that shared a message via the global namespace
topic. Thus, all other swarm members are considered as a
robot’s neighbors to date. Our architecture allows for easily
adding new patterns by creating a new subclass of either
the MovementPattern class or the VotingPattern class that
implements the pattern logic as well as a launch script and
a parameter file per robot platform.

We include a Hardware Protection Layer next to the
pattern hierarchy to prevent collisions with obstacles, includ-
ing other robots, and possible hardware damage to robots,
that runs permanently and independently from the executed
swarm behavior. As it is especially relevant when executing

Hardware Protection

Movement Pattern S Motors

Fig. 4. Arbitration architecture of the hardware protection layer. The light
blue area indicates the sensor range which is used by the movement pattern
to calculate drive commands. Hardware protection is active and suppresses
(using ‘suppression’ S as defined in the subsumption architecture) drive
commands from the movement patterns when there are obstacles in the
dark blue area as shown for the upper robot.

movement patterns, we explain the hardware protection layer
in more detail in Sec. III-B. The hardware protection layer
is left out of the pattern hierarchy to ensure its stability
independent from the implemented swarm behaviors. Fur-
thermore, several utility classes provide common methods to
process laser scan messages and to handle voting procedures,
and an extendable Enum with a basic set of states for better
readability of implemented state machines. We verified our
code by running several tests. Next to the ROS 2 pack-
ages constituting ROS2SWARM, we provide several ROS
and ROS 2 packages and launch scripts for running the
implemented behavioral primitives on simulated swarms in
Gazebo and on real robots.

B. Movement Patterns

Movement patterns implement behavioral primitives that
initiate and guide the robot motion. Six movement patterns
are included in the current version of ROS2SWARM: attrac-
tion, dispersion, discussed dispersion, drive, random walk,
and flocking (cf. Table I).

Fig. 3 visualizes the interplay between the different ROS 2
nodes that are used for movement patterns via the ROS 2
publisher/subscriber model. Each robot executes the move-
ment pattern independently from the rest of the swarm.
The movement pattern receives the robot’s laser scan data
(e.g., from a LiDAR), processes it, and calculates a drive
command (i.e., linear speed and rotation speed). The hard-
ware protection layer receives both the laser scan data and
the drive command from the movement pattern. It uses
an arbitration architecture to decide based on the distance
to the robot’s nearest obstacle whether to send the drive
command determined by the movement pattern or a drive
command for collision avoidance to the robot’s motors, see
Fig. 4. The distance threshold to trigger hardware protection
can be set via a parameter and can thus be adjusted for
different mobile robot platforms. If there is at least one
obstacle, including other robots, within the specified range,
hardware protection sends a drive command to the robot
calculated based on a repulsive potential field approach.
This way robots should keep a distance to obstacles, but
we cannot guarantee to prevent all collisions. Otherwise,
the drive command determined by the movement pattern is



TABLE I
BEHAVIORS THAT ARE CURRENTLY INCLUDED AS PATTERNS IN THE ROS2SWARM PACKAGE.

pattern description
m

ov
em

en
t

attraction Aggregation of robots based on an attractive potential field.
dispersion Distribution of robots based on a repulsive potential field.
discussed dispersion Distribution of robots while maintaining a distance decided on by the swarm.
drive Driving straight ahead.
flocking Minimalist flocking algorithm based on Moeslinger et al. [21].
random walk Random walk based on a simple state machine switching between driving straight ahead and turning randomly.

vo
tin

g

majority rule Opinion update based on the majority opinion.
voter model Opinion update based on adopting the opinion of a random neighbor.

executed. Hardware protection determines whether obstacle
avoidance is necessary every time new laser scan data is
received, regardless of whether also a new drive command
has been received from the movement pattern. Therefore,
movement patterns have to publish drive commands regularly
to ensure their correct execution.

C. Voting Patterns

Voting patterns implement collective decision-making be-
haviors. Collective decision-making is an important capa-
bility of a robot swarm to implement consistent actions on
swarm level [22], [23]. Currently, ROS2SWARM includes
two voting patterns: majority rule and voter model (cf.
Table I).

Each voting pattern uses a common ROS 2 topic in the
global namespace to enable swarm members to exchange
their opinions via a custom ROS 2 message type that includes
the robot’s ID and its opinion represented by an Integer.
All swarm members have to be in the same network in
order to have access to a shared global namespace topic.
Based on the other robots’ opinions, robots then update their
own opinion using the decision rule implemented by the
pattern. The currently included voting patterns make use of
a tumbling time window approach, that is, the data stream
is split into fixed-size, contiguous time intervals that do
not overlap. Other options, such as a sliding time window
approach (i.e., time intervals can contain overlapping data) or
including synchronization, are possible within the framework
and can be implemented if required. The data received during
one time frame is then processed by the decision rule to
find a new opinion. Robots share their opinions after each
update and for the most part, the swarm eventually reaches
consensus. By contrast to classical swarm settings that rely
purely on local communication, each swarm member can
currently access the opinions of the full swarm via the global
namespace topic.

D. Robot Platforms

ROS2SWARM is designed to work with any ground mobile
robot that (i) supports ROS or ROS 2, (ii) has sensors that
cover the robot’s surroundings and publish laser scan data,
and (iii) can be controlled by specifying a linear and a
rotational speed. Although ROS2SWARM is implemented in
ROS 2, it sill can be used with robot platforms running
on ROS by using a network bridge [24] that enables the

exchange of messages between ROS and ROS 2. To include
support for a new robot platform, a configuration file setting
the robot’s parameters, launch scripts for the robot platform,
and parameter files for the patterns have to be added to the
existing package. We provide out-of-the-box functionality in
the Gazebo simulator and for real robots for three ground mo-
bile robot platforms: Robotis TurtleBot3 Waffle Pi, Robotis
TurtleBot3 Burger, and Clearpath Robotics Jackal UGV.

The TurtleBot3 mobile robots are small and modular ROS
and ROS 2 research and education platforms for indoor
environments that are controlled via a Raspberry Pi. The
TurtleBot3 Burger and the TurtleBot3 Waffle Pi (cf. Fig. 1a)
differ mainly in size, that is, the TurtleBot3 Burger has a
smaller footprint and is taller than the TurtleBot3 Waffle Pi.
Both have differential drive, an IMU, and a LiDAR with 360◦

field of view and a range of 0.12 m to 3.5 m. Additionally,
the TurtleBot3 Waffle Pi has a Raspberry Pi camera.

The Jackal robots (cf. Fig. 1b) are mobile research plat-
forms for outdoor environments. They are equipped with an
onboard computer, GPS, and IMU by default. Our version
is additionally equipped with a Jetson TX2 board, a ZED
stereo camera, and an Ouster OS1-16 LiDAR with 16 vertical
layers, 360◦ field of view, and a range of 0.8 m to 5 m. In
contrast to the TurtleBot3 mobile robots, the Jackal supports
only ROS to date. Nevertheless, ROS2SWARM can be used
with the robot platform by using the aforementioned network
bridge [24] that enables the exchange of messages between
ROS and ROS 2.

IV. EXPERIMENTAL EVALUATION

We show the versatility of our ROS2SWARM package
by running several experiments using TurtleBot3 Burger,
TurtleBot3 Waffle Pi, and Jackal robots (cf. Sec. III-D). In
Experiment 1, we execute the basic attraction pattern on the
three different robot platforms in simulation and on the real
TurtleBot3 Waffle Pi to illustrate how swarm behaviors can
be used out of the box using ROS2SWARM. In Experiment 2,
we combine basic patterns into a more complex pattern to
showcase the modularity of our package. We limit ourselves
to these two experiments here due to space constraints, but
additional swarm behaviors (cf. Table I) are shown in the
supplementary video.

A. Experiment 1: Attraction
The patterns included in the swarm behavior library of

ROS2SWARM can be executed out of the box on multiple



(a) Initial robot positions exemplified
by the TurtleBot3 Waffle Pi
experiment

(b) Final configuration for the
grouping of seven TurtleBot3
Burgers

(c) Final configuration for the
grouping of seven TurtleBot3
Waffle Pis

(d) Final configuration for the
grouping of five Jackals

Fig. 5. Experiment 1 in the Gazebo simulator: swarms of (a, c) seven
TurtleBot3 Waffle Pis, (b) seven TurtleBot3 Burgers, and (d) five Jackal
robots executing the attraction pattern. Robots are initially positioned at
one meter intervals whereby the rightmost robot is positioned in the arena’s
center. The arena has a size of 18 m × 18 m, but we only show a subarea
for better visualization. Grid cells have a size of 1 m × 1 m each.

platforms. Here, we show the execution of the basic at-
traction movement pattern on TurtleBot3 Burger, TurtleBot3
Waffle Pi, and Jackal robots in the Gazebo simulator and in
hardware on real TurtleBot3 Waffle Pi robots. The pattern
uses an attractive potential field approach to determine drive
commands that guide the robots towards all detected obsta-
cles, including other robots, within a sensor range (hereafter
referred to as attraction range) that is specified via the
pattern’s parameter file (see Table I). The LiDAR does not
allow to differentiate robots and other obstacles and thus,
robots can be attracted to walls or other obstacles instead
of to other swarm members (sensors to discriminate walls
from robots could be added). The hardware protection layer
prevents collisions during pattern execution by ensuring that
robots maintain a minimum distance to all obstacles, even
when they attempt to group. In all experiments, we set
the distance threshold for hardware protection to 0.5 m for
TurtleBot3 robots and 1.2 m for Jackal robots taking the
minimum detection ranges of the LiDARs into account.

First, we run the attraction pattern on three different
swarms in the Gazebo simulator, namely a swarm of
seven TurtleBot3 Burgers, a swarm of seven TurtleBot3
Waffle Pis, and a swarm of five Jackals. A launch script pro-
vided by ROS2SWARM handles the startup of the simulation
environment. The script creates a swarm of the respective
robot platform and executes the pattern as specified by its
parameters. We use an empty 18 m × 18 m arena that is
bounded by walls and position all robots initially close to
the arena center, such that the walls are out of the LiDAR’s
detection range. As the different robot platforms differ in
dimensions and components, we have to parameterize the

(a) Initial robot positions (b) Aggregated swarm

Fig. 6. Experiment 1 in hardware: a swarm of seven TurtleBot3 Waffle Pis
executing the attraction pattern. (a) Top view of initial robot positions in a
4.8 m×6.6 m arena and (b) aggregated robots. Six robots aggregate during
pattern execution while the rightmost robot lost the group and is attracted
to the wall. The floor tiles have a size of 0.6 m × 0.6 m.

attraction pattern individually for each platform. We set the
attraction range from the minimum detection range of the
LiDAR, that is, 0.12 m for both TurtleBot3 robot platforms
and 0.8 m for Jackal robots, to a maximum of 2 m for the
TurtleBot3s and of 3 m for Jackals. In Fig. 5 we show screen-
shots of Gazebo simulation runs of the attraction pattern on
robot swarms of the three different robot platforms. In all
simulations, the swarms successfully gather in one cluster.
But the varying distance threshold for hardware protection,
which specifies the minimum distance robots try to keep
to prevent collisions, leads to differences in the grouping
behavior. The TurtleBot3 Burger and the TurtleBot3 Waffle
Pi have a low distance threshold for hardware protection.
Consequently, the robots can form close groups as shown in
Figs. 5b and 5c. By contrast, the Jackal has a rather high
distance threshold for hardware protection due to a high
minimum detection range of its LiDAR. Hence, the robots
do not group as closely as the TurtleBot3 robot platforms.

Next, we run the attraction pattern in hardware on a swarm
of seven real TurtleBot3 Waffle Pis in a 6.6 m×4.8 m empty
arena that is bounded by walls. We set the attraction range
from 0.12 m to 0.8 m to avoid that robots are mostly attracted
to the arena walls due to the smaller arena. Fig. 6 shows the
initial robot positions and the aggregated swarm. We find
that six robots form one group that repeatedly splits and
merges over time (see supplementary video). Thereby, two
groups with three robots each form already after approx. 5 s
and merge the first time after around 60 s of execution time.
One robot moved away from the group and is guided towards
the arena’s walls by the attractive potential field as robots
and other obstacles cannot be differentiated based on the
LiDAR’s sensor data only. In summary, our ROS2SWARM
package proved to be effective in testing and running swarm
behaviors on different robot platforms in simulations and on
real robot hardware.

B. Experiment 2: Discussed Dispersion

In the next hardware experiment, we showcase how ba-
sic patterns can be used to form combined patterns to
create more complex behaviors. This shows the modular-
ity and reusability of the available patterns included in
ROS2SWARM’s swarm behavior library. As an example, we
combine the basic majority rule voting pattern and the basic



Majority Rule Dispersion

Discussed Dispersion

distance = f(opinion)

time > 20s

opinion
distance drive

command

ROS 2 message

state transition

Fig. 7. Architecture of the discussed dispersion pattern. For 20 s,
swarm members execute only the majority rule pattern to determine their
majority opinion. This opinion is mapped to a distance by the discussed
dispersion pattern using a mapping function f which is set as the minimum
distance during dispersion. The dispersion pattern determines the robot’s
drive commands based on a repulsive potential field approach. Rectangular
boxes give patterns and rounded boxes give states.

initial opinions final opinions

(a) Initial/final opinions
based on the majority rule

(b) Dispersed swarm at agreed on distance

Fig. 8. Experiment 2 in hardware: a swarm of seven TurtleBot3 Waffle Pis
executing the discussed dispersion pattern that combines two basic patterns.
The robots keep the start configuration as shown in Fig. 6a for the first 20 s
executing only the majority rule pattern. In this case here, robots decide for
opinion 1 that is mapped to a minimal distance between robots of 1.0 m.
Afterwards, robots disperse in the arena keeping this collectively decided
distance (or more) to each other and the arena walls.

dispersion movement pattern and form a new pattern that
we call discussed dispersion. The robots are supposed to
disperse while maintaining a robot-to-robot distance that they
collectively choose themselves. The minimum specifiable
robot-to-robot distance equals the distance threshold trigger-
ing hardware protection as both dispersion and hardware pro-
tection layer use the same repulsive potential field approach.
As visualized in Fig. 7, robots execute only the majority rule
pattern in the first 20 s staying on their initial positions (as
previously shown in Fig. 6a). After this initial decision phase,
both the majority rule pattern and the dispersion pattern are
executed in parallel. The swarm may still change its opinion,
for example, when several new robots are added. The opinion
determined by the majority rule pattern is mapped to a
distance value using a mapping function f . This is set as
the minimum distance that robots maintain from all obstacles
including other robots when executing the dispersion pattern.

We execute the combined pattern on a swarm of seven
real TurtleBot3 Waffle Pis, see Fig. 8. The opinion of each
robot is randomly initialized to r ∈ {0, 1, 2} and mapped
to a distance of f(0) = 0.6 m, f(1) = 1.0 m, or f(2) =
1.4 m, respectively. In the visualized run, robots collectively
choose opinion 1 (distance of 1.0 m). As shown in Fig. 8, the
swarm distributes in space until each robot is at least 1.0 m

away from all obstacles, that is, other robots and walls. In
summary, we have shown how the modularity of our swarm
behavior library can easily be leveraged to derive new and
more complex swarm behaviors.

V. CONCLUSION

Our ROS2SWARM ROS 2 package provides a library
of ready-to-use swarm behaviors for collective motion and
collective decision-making applications. We showed that
the package can be extended easily and that all patterns
are reusable and modular. This allows to run combined
patterns for more complex applications as illustrated in our
Experiment 2 (cf. Sec. IV-B). To date, three ground mobile
robots are supported out of the box by ROS2SWARM, namely
TurtleBot3 Burger, TurtleBot3 Waffle Pi, and Jackal. Support
for further robot platforms running ROS or ROS 2 can be
integrated with minimal effort. ROS2SWARM unites the ad-
vantages of swarm robotics, namely adaptability, robustness,
and scalability, and of ROS 2, that is, platform independence
and modularity. In total, our package is versatile and enables
a quick and easy setup of swarm robotics applications.

While the package in its current form already offers the
most important concepts for swarm applications, we want
to add several enhancements in the future. First, all robots
must currently be connected to a common network for the
execution of voting patterns. So far, we use a central WiFi
network with a single access point for this purpose and thus
have a potential single point of failure. In future, we will
integrate IR communication [25] or switch to an ad-hoc WiFi
network that allows to determine a robot’s neighbors based
on the decreasing WiFi signal strength over distance. Also,
our hardware protection layer does not guarantee the preven-
tion of collisions using the current repulsive potential field
approach. We plan to investigate more reliable approaches,
such as decentralized safety barrier certificates [26]. Further-
more, we continue to extend the library with more collective
behaviors and, in particular, with more complex behaviors,
such as pattern formation. We will integrate tests into the
package for quantitatively evaluating the effectiveness of
implemented swarm behaviors, for example, by computing
the mean-distance-to-centroid in aggregation. A longer-term
plan is to integrate support for more robot platforms that may
need different drive commands (e.g., quadcopter swarms [8],
[27]) than the currently included platforms and to make the
package independent of a LiDAR by supporting different
sensor setups for obstacle detection, such as multiple IR
sensors and cameras. We plan to release the package to the
public ROS 2 buildfarm. We hope to form a developer com-
munity that keeps extending and maintaining this package for
the profit of a growing swarm robotics research and teaching
community.

ACKNOWLEDGMENTS

The authors thank Steffen Fleischmann, Vincent Jansen,
and Daniel Tidde for their contributions to the implementa-
tion of ROS2SWARM, Yuanchen Yuan for proofreading the
paper, and Lucas Kaiser for support in image editing.



REFERENCES

[1] H. Hamann, Swarm Robotics: A Formal Approach. Cham: Springer
International Publishing, 2018.

[2] I. A. D. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon,
T. Estlin, R. Madison, J. Guineau, M. McHenry, I.-H. Shu, and
D. Apfelbaum, “CLARAty: Challenges and steps toward reusable
robotic software,” International Journal of Advanced Robotic Systems,
vol. 3, no. 1, p. 5, 2006.

[3] C. Pinciroli and G. Beltrame, “Buzz: a programming language for
robot swarms,” IEEE Software, vol. 33, no. 4, pp. 97–100, 2016.

[4] M. Quigley, J. Faust, T. Foote, and J. Leibs, “ROS: an open-source
Robot Operating System,” in ICRA workshop on open source software,
vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[5] M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: Past,
present, and future [point of view],” Proceedings of the IEEE, vol.
109, no. 7, pp. 1152–1165, 2021.

[6] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance
of ROS2,” in 2016 International Conference on Embedded Software
(EMSOFT), 2016, pp. 1–10.

[7] A. Barciś, M. Barciś, and C. Bettstetter, “Robots that Sync and Swarm:
A proof of concept in ROS 2,” in 2019 International Symposium on
Multi-Robot and Multi-Agent Systems (MRS), 2019, pp. 98–104.

[8] A. Barciś and C. Bettstetter, “Sandsbots: Robots that sync and swarm,”
IEEE Access, vol. 8, pp. 218 752–218 764, 2020.

[9] A. Testa, A. Camisa, and G. Notarstefano, “ChoiRbot: A ROS 2
toolbox for cooperative robotics,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 2714–2720, 2021.

[10] J. P. Queralta, Y. Xianjia, L. Qingqing, and T. Westerlund, “Towards
large-scale scalable MAV swarms with ROS2 and UWB-based situated
communication.”

[11] T. De Wolf and T. Holvoet, “Design patterns for decentralised coor-
dination in self-organising emergent systems,” in Proceedings of the
4th International Conference on Engineering Self-Organising Systems,
ser. ESOA’06. Berlin, Heidelberg: Springer-Verlag, 2006, p. 28–49.

[12] J. L. Fernandez-Marquez, G. Di Marzo Serugendo, S. Montagna,
M. Viroli, and J. L. Arcos, “Description and composition of bio-
inspired design patterns: a complete overview,” Natural Computing,
vol. 12, no. 1, pp. 43–67, Mar. 2013.

[13] L. Pitonakova, R. Crowder, and S. Bullock, “Information exchange
design patterns for robot swarm foraging and their application in robot
control algorithms,” Frontiers in Robotics and AI, vol. 5, p. 47, 2018.

[14] D. St-Onge, V. S. Varadharajan, I. Švogor, and G. Beltrame, “From
design to deployment: Decentralized coordination of heterogeneous
robotic teams,” Frontiers in Robotics and AI, vol. 7, p. 51, 2020.

[15] C. Xuefeng, C. Zhongxuan, W. Yanzhen, and Y. Xiaodong,
“micros swarm framework - ROS Wiki,” 2019. [Online]. Available:
https://wiki.ros.org/micros swarm framework

[16] K. Morris, G. Arpino, S. Nagavalli, and K. Sycara, “Full stack swarm
architecture,” RISS Working Papers Journal, 2018.

[17] C.-E. Hrabia, T. K. Kaiser, and S. Albayrak, “Combining self-
organisation with decision-making and planning,” in Multi-Agent Sys-
tems and Agreement Technologies, F. Belardinelli and E. Argente, Eds.
Cham: Springer International Publishing, 2018, pp. 385–399.

[18] V. C. Kalempa, M. A. S. Teixeira, A. S. de Oliveira, and J. A. Fabro,
“Intelligent dynamic formation of the multi-robot systems to cleaning
tasks in unstructured environments and with a single perception
system,” in 2018 Latin American Robotic Symposium, 2018 Brazilian
Symposium on Robotics (SBR) and 2018 Workshop on Robotics in
Education (WRE), Nov 2018, pp. 71–76.

[19] Y. Liu, A. Ali, and G. Dare, “swarm robot ros sim,” 2020. [Online].
Available: https://github.com/yangliu28/swarm robot ros sim

[20] Gazebo, “Gazebo,” 2020. [Online]. Available: http://gazebosim.org/
[21] C. Moeslinger, T. Schmickl, and K. Crailsheim, “A minimalist flocking

algorithm for swarm robots,” in Advances in Artificial Life. Darwin
Meets von Neumann, G. Kampis, I. Karsai, and E. Szathmáry, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 375–382.

[22] G. Valentini, E. Ferrante, H. Hamann, and M. Dorigo, “Collective
decision with 100 Kilobots: Speed vs accuracy in binary discrimination
problems,” Journal of Autonomous Agents and Multi-Agent Systems,
vol. 30, no. 3, pp. 553–580, 2016.

[23] G. Valentini, E. Ferrante, and M. Dorigo, “The best-of-n problem in
robot swarms: Formalization, state of the art, and novel perspectives,”
Frontiers in Robotics and AI, vol. 4, p. 9, 2017.

[24] D. Thomas, E. Fernandez, and W. Woodall, “State of ROS 2
- demos and the technology behind,” in ROSCon Hamburg
2015. Open Robotics, September 2015. [Online]. Available:
https://doi.org/10.36288/ROSCon2015-900743

[25] F. Arvin, K. Samsudin, and A. R. Ramli, “A short-range infrared
communication for swarm mobile robots,” in 2009 International
Conference on Signal Processing Systems, 2009, pp. 454–458.

[26] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[27] C. Steup, S. Parlow, S. Mai, and S. Mostaghim, “Generic component-
based mission-centric energy model for micro-scale unmanned aerial
vehicles,” Drones, vol. 4, no. 4, p. 63, 2020.

https://wiki.ros.org/micros_swarm_framework
https://github.com/yangliu28/swarm_robot_ros_sim
http://gazebosim.org/
https://doi.org/10.36288/ROSCon2015-900743

	Introduction
	Related Work
	ROS2swarm package
	General Package Structure
	Movement Patterns
	Voting Patterns
	Robot Platforms

	Experimental Evaluation
	Experiment 1: Attraction
	Experiment 2: Discussed Dispersion

	Conclusion
	References

