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Abstract. Research in swarm robotics and collective behaviors is often
focused on homogeneous swarms. However, heterogeneity in behaviors
can be advantageous as we know, for example, from studies on social
insects. Our objective is to study the hypothesis that there are poten-
tial advantages of heterogeneous swarms over homogeneous swarms in an
aggregation scenario inspired by behaviors of juvenile honeybees. Even
without task switching – that is, with predefined, static roles for certain
swarm fractions – we find in our case study that heterogeneous swarms
can outperform homogeneous swarms for a predetermined set of basic be-
haviors. We use methods of evolutionary computation to define behaviors
imitating those found in honeybees (random walkers, wall followers, goal
finders, immobile agents) and also to find well-adapted swarm fractions
of different predetermined behaviors. Our results show that non-trivial
distributions of behaviors give better aggregation performance.

1 Introduction

In the field of swarm robotics the swarm was, at least early on, defined as (quasi-
)homogeneous [3]. This homogeneity referred primarily to the hardware of the
swarm robots because that would allow for mass production and consequently
for inexpensive swarms. The idea of mass production is followed to date as seen
in the kilobot robot [27] and experiments with 1000 robots [28]. Still, a new
trend pushes towards heterogeneous swarm research, such as the Swarmanoid
project [9]. Heterogeneity in the morphology of swarm members is also seen in
natural systems, such as polymorphism in ants [17]. Another concept is to have
heterogeneity in the behavior4. A swarm with heterogeneous behaviors can still

4 The term ‘behavior’ is used in its biological sense here, that is, it describes a set of
an organism’s actions. Within the computer science community it would be similar
to an agent’s strategy or policy and should not be mixed up with low-level behaviors
on the level of atomic actions (e.g., turning, gripping).



be homogeneous concerning its hardware, hence, still allowing for mass produc-
tion. The idea of heterogeneous behaviors in a swarm is that swarm members
have predetermined behavioral roles. For example, the polyethism of honey-
bees [32], that is, taking over different tasks at different times in a bee’s life,
could be interpreted as a concept of heterogeneous behaviors because the bees
rarely switch their general tasks. This is in contrast to frequent task switching
in common task allocation and division of labor problems which could be inter-
preted as temporary heterogeneous behavior [7, 6, 29, 37]. However, each swarm
member is typically capable of executing any of the tasks and tasks are switched
on demand. There is also the concept of behavioral castes “to describe groups
of individuals that perform the same set of tasks in a given period.” [10] If
tasks are performed for longer periods, agents might specialize, possibly even
permanently and hence form heterogeneous behaviors [26]. In natural systems
there are examples of swarms that are heterogeneous in their morphology and
that have morphology-dependent task switching behaviors [35, 17]. In artificial
swarms there are also examples of heterogeneous swarms such the aboved men-
tioned Swarmanoid swarm robot project [9] or software approaches such as multi-
type ant colony optimization (MACO) [25]. Swarms that allow for frequent task
switching show generally high adaptivity to different work loads and environ-
mental conditions [4, 23], but there are also task switching costs (e.g., switching
times) that decrease the efficiency [14, 22]. Still, dynamic task switching is advan-
tageous in many situations and, for example, highly developed in many species
of social insects. Task partitioning and task switching behaviors are also subject
to research in evolutionary swarm robotics [11]. The evolution of heterogeneous
behaviors in a multiagent system is reported by [36].

In the following investigations we focus on an extreme case by not allowing any
task switching. Agents start with a predetermined behavior and keep it for the
whole experiment. The motivation is to simplify the swarm system and to inves-
tigate the potential capabilities of such a static non-task-switching system. We
hypothesize that swarms with predetermined and fixed behavioral heterogeneity
can outperform homogeneous swarms for certain sets of predetermined behav-
iors. This idea is inspired by the behavior of juvenile honeybees that were found
to show several behavioral roles in an aggregation behavior while not switching
between them during the whole experiment [34, 20]. Such a complex swarm sys-
tem with heterogeneous behaviors is an interesting research object in itself but
also as an inspiration for how to design swarm robotic systems. We focus on an
aggregation task in which the swarm has to find a single target area or to choose
between two target areas. In the latter case, the behavior can also be interpreted
as a collective-decision making process [34, 15, 12]. This setting is subject to many
studies on an algorithm for homogeneous swarms called BEECLUST [30, 5, 16,
13, 2, 1, 18, 19, 31, 21]. The BEECLUST algorithm (see Fig. 1) is actually inspired
by the above mentioned behavior of young honeybees. Agents controlled by the
BEECLUST algorithm move around randomly (step 1 and step 2 create tra-
jectories of straight lines interrupted by rotations due to collision avoidance),
whenever they meet another swarm member (step 3) they stop, measure the



1.) Each agent moves straight until it

perceives an obstacle O within

sensor range.

2.) If O is a wall the agent turns

away and continues with step 1.

3.) If O is another agent, the agent

measures the local potential field value.

The higher the scalar field value the

longer the agent stays still.

After this waiting period, the

agent turns away from the other

agent and continues with step 1.

Fig. 1. The BEECLUST algorithm [30].

local potential field value (e.g., temperature, light, gas concentration), wait for a
time proportional to that value, and continue to move randomly afterwards. As
a result, the robots form clusters, which is followed by a competition of growing
and ‘dissolving’ robot clusters until one big cluster remains with robots leaving
and returning occasionally. The BEECLUST algorithm simplifies the situation
found in bees by reducing the different behavior types to only one: random walk.
BEECLUST implements a homogeneous approach. The following work can be
viewed as an extension of the BEECLUST algorithm to the domain of hetero-
geneous behavior. In contrast to the study reported in [20], here we investigate
behavior compositions with arbitrary numbers that are optimized by evolution-
ary algorithms, we rely on a mathematical model to represent the individual
behavior types, and we investigate different environments.

In this paper, we investigate the above mentioned hypothesis whether a swarm
that is heterogeneous in its behavior can outperform a homogeneous swarm under
the condition that there are only predetermined basic behaviors and agents are
not allowed to switch between them. The motivation is our finding in the behav-
ior of juvenile honeybees that take behavioral roles and never switch them during
the run of the experiment [34, 20]. Aggregation at appropriate spots within the
bee hive is essential for survival of honeybees and hence we follow that the
observed heterogeneous swarm behavior is a well adapted product of natural
evolution. In this study, we investigate whether we can reproduce that behavior
in simulated agents and test the hypothesis whether heterogeneity outperforms
homogeneity in the investigated setting. The results of this study might help to
make the right design decisions for systems of swarm robots, such as consider-
ing a heterogeneous approach in the first place and then choosing appropriate
compositions of predetermined behaviors.

In the following, we limit our case study to a selection of four predetermined
behavior types inspired by the biological system of juvenile honeybees. Our study
might be considered as an example of biomimicry research due to this choice.
However, we also motivate this choice by the opinion that these naturally evolved



behaviors might be well adapted to the investigated task of aggregation. The
definition of the four behavior types found in juvenile honeybees and a novel
model to describe them are our next steps.

2 Four behavior types in juvenile honeybees

Honeybees (Apis mellifera) of age younger than 24 hours show four types of
behaviors when allowed to move in a bounded temperature field [34]. The exper-
iments were done in a circular arena surrounded by walls that cannot be climbed
by the bees. Heat lamps create a distinct temperature field and it is known that
juvenile honeybees have a preference for areas of 36◦C [31, 21]. Each of the four
behavior types consists of up to two actions: moving and stopping. Except for
one type (immobile) all behavior types are combinations of both actions. Switch-
ing between the two actions is not considered task switching. The types differ
in their movement pattern; there are: random walker (no bias found, neither
due to walls nor due to temperature), wall follower (bias towards walls), goal
finder (bias towards warmer areas), and immobile agent (no or slow movement
only). See Fig. 2 for typical trajectories assigned to their respective behavior
type based on tracking data of young honeybees. Note, that the young honey-
bees never switch between the different behavior types during an experiment.

3 Mathematical model of the behavior types

The behaviors of our agents are directly inspired by the behaviors observed in
young honeybees. These behaviors are logically separated in two components:
individual behavior aspects differ according to the four identified types and the
collective behavior aspects that are identical across all types except for the im-
mobile agents that do not show a reaction to social interactions because they
only stay stopped always.

3.1 Individual behavior

We give a general, unified model here that is parametrized to describe all four
behavior types. These behavior types are instantiated through different sets of
parameters (see Section 3.3). An agent has a position x = (x0, x1)ᵀ (arena limits
are

√
x20 + x21 < 1), a heading φ ∈ [0, 2π), and a nominal velocity v ∈ [0, 5]

which is downscaled by discretization to v/100 per time step. An agent can
measure an environmental feature, which is temperature in the case of young
honeybees but it could also be light, ground color, gas concentration, etc. The
environmental feature is modeled by a potential field P (r), r ∈ R2. An agent’s
turning behavior depends on the environmental feature and/or random effects.
The parameter α ∈ [0, 1] is a weighting factor that determines how intensively an
agent follows the gradient of the potential field. A 100% greedy agent following
the gradient is defined by α = 1. An agent that moves randomly is defined



by α = 0. Any intermediate value of α defines a corresponding agent that follows
the gradient to some extent but is also subject to noise. We define the change of
an agent’s heading (for simplicity without units) by

dφ(t)

dt
=α min

(
atan

(
∂P (x(t))

∂x0
,
∂P (x(t))

∂x1

)
, φmax

)
+ (1− α)ξ(σ, t), (1)

for a stochastic process ξ based on Gaussian noise with zero mean, standard
deviation σ, and maximal turning angle φmax = 7/18π (φmax = 70◦). An agent’s
velocity (for simplicity without units) is defined by

dx

dt
=

(
cosφ(t)
sinφ(t)

)
v(t)m(t), (2)

for its current nominal speed v(t) and m(t) ∈ {0, 1} giving the agent’s current
state: m = 0 for stopped, m = 1 for moving. Note that the nominal speed v
is irrelevant in state stopped (m = 0). The transitions between stopped and

(a) Tracked bee trajectory
of type random walker.

(b) Tracked bee trajectory
of type wall follower.

(c) Tracked bee trajectory
of type goal finder.

(d) Tracked bee trajectory
of type immobile agent.

Fig. 2. Typical tracked trajectories of young honeybees (same length of experiment),
assigned to the four behavior types, start of trajectory at triangle, end at circle, 36◦C
target area at the left hand side of the arena.



moving are modeled as probabilistic state machine with probability to move
again Pmove and probability to stop Pstop. Finally, the change of an agent’s
nominal speed v over time is modeled by a simple Markov chain. The interval of
possible velocities [0, 5] is discretized as a set of 51 velocities. For each of these
discrete velocities v we have a probability of increasing the velocity Pincr(v) by
one step (i.e., v′ = v + 1/50) and a symmetrical probability of decreasing the
speed 1 − Pincr(v) (i.e., we force a change). These probabilities Pincr define the
velocity distribution that results from our model.

3.2 Social behavior

The agents’ social behavior, that is the interactions between agents, are ho-
mogeneous across all behavior types. They follow the definition of the behav-
ioral model of young honeybees [34] and the definition of the BEECLUST algo-
rithm [30]. Once two agents perceive each other, they stop their motion, measure
the local value of the potential field P , and wait for a certain period. This wait-
ing time w is modulated proportionally to the measured potential field value P .
It is defined by the function

w(P ) =
tmaxP

2

θ + P 2
, (3)

for parameters tmax = 132 time steps and θ = 1.4 × 104. The parameters tmax

and θ are chosen to generate an appropriate relation between the frequency of
robot-robot encounters, the maximum of the potential field P , and the resulting
interval of occurring waiting times. During the waiting time all features of the
individual behavior are turned off (i.e., velocity v and agent state m are not rele-
vant). Once the waiting time has elapsed the agents do a u-turn of [−0.25π, 0.25π]
and start to move again following their individual behavior type.

3.3 Evolution of parameters for behavior types

Data acquired from experiments with single, young honeybees5 are used to find
appropriate parameters for our mathematical model. These bee-derived data
were manually classified to the four behavior types. A parameter set (σ, α,

5 unpublished, publication in preparation

RW WF GF IA

σ [radian] 0.090 0.0004 0.57 0.885
α 0.016 0 0.99 0.481
Pstop 0 0 0.007 0.163
Pmove 0 0 0.024 0.002

Table 1. Typical parameters for the four behavior types of our model: random walker
(RW), wall follower (WF), goal finder (GF), and immobile agent (IA).



Pstop, Pmove, Pincr) for each behavior type is evolved using a simple genetic al-
gorithm. The population size is 100, we evolve for 100 generations, the mutation
rate is 0.25, we select based on proportionate selection, and 30 repetitions per
evaluation are done. In each evaluation the agent operates in an arena with only
one goal area to avoid side-effects of the symmetrical setting investigated in the
swarm experiments. The agent is initially positioned far from that goal area with
random orientation and random speed. The agent’s behavior is defined by the
considered parameter set and it is simulated for 1.5 × 104 time steps. During
the simulation all turns and changes of velocity are stored in a histogram of
turning angles and a histogram of velocities. The fitness function is a weighted
sum of two features: First, it rewards similarities in the histograms of the simu-
lated agent to the histograms acquired from the bee data. Second, type-specific
qualities, that are not directly represented by the histograms of turning angles
and velocities, are rewarded. In the case of the goal finder, turns towards the
goal (i.e., maximum in the potential field P ) are rewarded. The gradient of the

potential field (∂P (x)
∂x1

, ∂P (x)
∂x2

)ᵀ defines the optimal direction for each position x.
For each time step, the difference between the agent’s direction and the optimal
direction is calculated. The sum of these differences is part of the fitness func-
tion and hence imposes a minimization problem. In the case of the wall follower,
time spent close to the wall is rewarded. This is done by defining three areas:
a ring-shaped area Rwall directly at the wall x ∈ Awall :

√
x20 + x21 > 0.47, a

circular area far from the wall x ∈ Acenter :
√
x20 + x21 < 0.4, and a second ring

in between x ∈ Aneutral : 0.47 <
√
x20 + x21 < 0.4. In each time step, the agent

is rewarded by a score of +1 when positioned on Awall, it receives a penalty
of −1 when positioned on Acenter, and it is treated neutral (±0) when positioned
on Aneutral. This score needs to be maximized to evolve a wall following agent.
In the case of the immobile agent, staying stopped is rewarded which is im-
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Fig. 3. Histograms of turning angles and velocities for all four behavior types based
on the mathematical model and parameters as given in table 1 (averaged over 200 rep-
etitions of simulations, 1.5 × 104 time steps each).



plemented by minimizing the agent’s average speed. In the case of the random
walker, no type-specific quality is defined.

The results of these evolutionary runs are shown in table 1 (except for the
50 values of Pincr). The resulting histograms of turning angles and velocities
(due to Pincr(v)) for these four behavior types as defined by our model and the
parameters given in table 1 are shown in Fig. 3. These results do not allow for
a simple interpretation but a few features can be discussed here. The lowest
peak for turning angle 0 is found for the random walker which indicates that
the turning angle distribution is close to a uniform distribution. The random
walker is also one of the fastest. The next peak for angle 0 is that of the goal
finder but it also has low values for extreme turning angles. Hence, the goal
finder approaches the goal area in a rather straight trajectory. In addition, the
goal finder moves slowly. The wall follower has a distribution of turning angles
that is close to a uniform distribution similarly to the random walker. However,
the maximal turning angle σ is small, which leads to the behavior of a wall
follower. Additionally there are two more peaks for big turning angles which
are the required corrections when following the curved wall around the circular
arena. The wall follower moves rather fast. In the case of the immobile agent the
turning angle is of limited relevance, instead its low average velocity is of more
importance.

4 Setup of experiments

In the following experiments, the agents move in a circular arena with either
one goal area or two goal areas (see Fig. 4). Following our inspiration from the
honeybee experiments we define the potential field P as a temperature field here.

(a) One global goal area
at the right hand side of
the arena.

(b) A local goal area at
the left-hand side and a
global goal area at the
right-hand side.

Fig. 4. Experimental setup of the arena; the global goal area is located at the right-
hand side of the arena and contains temperatures between 36◦C and 30◦C. The local
goal area at the left-hand side of the arena contains temperatures between 32◦C and
30◦C. Each of the goal areas covers 11% of the arena.



The potential field P is chosen in a way that there is a global optimum at the
right-hand side and an optional local optimum at the left-hand side of the arena.
In our experimental settings, these optima are located at the wall, see Fig. 4.
In the first experiment 4(a), there is an orange area around the global optimum
on the right side. This area is called global goal area and has temperatures of
30◦C to 36◦C ranging from the boundary between the orange and black area
to the wall. In the second experimental setup we create a choice-experiment.
Additionally to the global goal area on the right side, there is an orange area
around the local optimum on the left side. This area is called local goal area and
has a maximal temperature of 32◦C at the outer side and 30◦C at the boundary
between the orange and black area. Each of the goal areas covers 11% of the
total arena.

5 Evolution of behavior type compositions

A variation of evolutionary algorithms, called wolf-pack-inspired evolutionary
algorithm [38], is used to evolve the composition of behavior types in the swarm.
The algorithm maintains overlapping generations and considers a fixed max-
imum population size. Proportional selection (fitness-based) is used to select
individuals (i.e., compositions of behavior types) for mutation that fill empty
places in the population. In every generation, one of the individuals, that have
not been evaluated yet, is evaluated (alternatively the least evaluated individual
if all the individuals have been evaluated already). The algorithm maintains the
hierarchy in the population and keeps its diversity by removing older individ-
uals with an equal or lower fitness than a newly evaluated individual (with a
probability factor). The fitness function is defined by

F = G− L (4)

where G is the number of agents within the global goal area and L is the number
of agents within the local goal area (if there is one).

6 Results

For both experimental settings (one global goal and choice-experiment), we inves-
tigate the potential of heterogeneous swarms. As described in the above section,
we use evolutionary algorithms to adapt the swarm’s behavior-type composition
to the environment. The experiments are based on a fixed swarm size N = 15.
The results are based on n = 18 independent runs of the evolutionary algorithm
and the population of compositions was initialized to a random uniformly dis-
tributed setting of behavior types. The evolved approach is compared to the
fitness of several homogeneous swarm settings (Fig. 5) that were evaluated in
n = 100 independent simulation runs (no evolution because composition is pre-
determined). In the first three homogeneous swarm settings we use a swarm size



of N = 15. For the last two settings we used a swarm size of N = 12 to test for
a potential density dependency.

First we focus on the experiment with only one goal area (Fig. 5(a)). The median
fitness for 15 random walkers is 7, for 15 goal finders it is 5, for 15 wall followers
it is 9, for 12 random walkers it is 6, and for 12 wall followers it is 8. For the
heterogeneous swarm optimized by evolution the median fitness is 10 (n = 18).
The evolved behavior-type composition is found to be significantly better than
the homogeneous swarms (based on Wilcoxon rank sum test, p < 0.05).

Figure 5(b) shows the results of the choice experiment (global goal area and local
goal area). Here we compare the evolved heterogeneous behavior-type composi-
tion (first box plot, labeled ‘Evo’) to homogeneous behavior-type compositions.

The median fitness for 15 random walkers is 2, for 15 goal finders it is 0, for 15 wall
followers it is 3, for 12 random walkers it is 2, and for 12 wall followers it is 2. For
the heterogeneous swarm optimized by evolution the median fitness is 5.5 (n =
18). The evolved behavior-type composition is found to be significantly better
than the homogeneous swarms (based on Wilcoxon rank sum test, p < 0.05).
Hence, our heterogeneous approach is the most effective variant of all tested
configurations. The results for 12 random walkers and 12 wall followers indicate
no dependency on density. The motivation of this test is based on results we
report below and the consideration that immobile agents might potentially be
used to virtually decrease the agent density.

Next, we evolve behavior-type compositions for different environments (one or
two goal areas) and different initializations of the composition populations. We
start with the setting that has only one goal area (see Fig. 4(a)). The evolution-
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Fig. 5. Comparison of the best fitness between one evolved heterogeneous setting and
several homogeneous swarm settings for one goal area at the wall (left) and the choice
experiment on the right (global goal area and local goal area); heterogeneous swarm
(labeled ‘Evo’), homogeneous swarms with only random walkers (RW), goal finders
(GF), or wall followers (WF). In both settings, the heterogeneous swarm is significantly
better than all homogeneous swarms (based on Wilcoxon rank sum test, p < 0.05).
Other significances are not shown.



ary approach is as described above, that is, the initial population of compositions
is sampled from a random uniform distribution. For our analysis, we take the
best composition of the last population from each evolutionary run. The box
plots shown in Fig. 6(a) give a summary of these best compositions. The num-
ber of occurrences for each behavior type is given for the n = 18 best evolved
compositions. The median number of goal finders is 1.5, the median of wall fol-
lowers is 8.5, the median of random walkers is 2.5, and the median of immobile
agents is 1. It is counterintuitive that goal finders are relatively infrequent while
the high number of wall followers might seem reasonable because the goal area
is located at the wall. In Fig. 6(b) we give an overview of the type frequencies of
the current best compositions over the number of evaluations averaged over all
evolutionary runs. We started with compositions that are in average uniformly
distributed. During the first 10 evaluations the number of immobile agents is
decreased while the number of wall followers is increased quickly. The number
of random walkers increases initially but then decreases again. The number of
goal finders is decreased over a long period during the first 40 evaluations. After
about 100 evaluations a saturation effect is observed.

Next we investigate the choice experiment (local goal area on the left side and
a global goal area on the right side of the arena). The box plots of Fig. 7(a)
give the number of agents for each behavior type as they occurred in the best
compositions of n = 20 independent evolutionary runs. The median number of
goal finders is 1, the median of wall followers is 6, the median of random walkers
is 2.5, and the median of immobile agents is 4. As expected the number of goal
finders is smaller in comparison to the setting with only one goal (cf. Fig. 6(a))
because goal finders merely follow the gradient and the swarm separates between
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the two goal areas. The number of wall followers is decreased, the number of
random walkers is increased in its variance, and the number of immobile agents
is increased in comparison to the one-goal setting. Especially the increase of im-
mobile agents is counterintuitive because they are of no direct use to maximize
the fitness function. In Fig. 7(b) we give an overview of the type frequencies
of the current best compositions over the number of evaluations averaged over
all evolutionary runs. Starting from approximately uniformly distributed com-
positions the number of immobile agents first decreases and is then increased
slowly over about 120 evaluations at the cost of random walkers. After about
130 evaluations a saturation effect is observed.

7 Discussion

Concerning the results for the one-goal setting (Fig. 5(a) and 6) one would
expect that the best fitness in this setup is achieved by making exclusive use
of goal finders only. From our experience with the simulation we can tell that
too many goal finders actually block each other in areas before the goal area
which results in clusters outside of the goal area. Instead, a limited number of
goal finders turns out to be useful because such deadlock situations are then
avoided. They serve as seeds within the goal area and help agents of other types
to form clusters inside the goal area more easily, which is an example of how
the different behavior types create opportunities of cooperation between agents.
Most of the agents of the evolved heterogeneous swarms are wall followers. With
only one goal area present, the wall followers always end up in the goal area
and form a cluster. In comparison, the number of random walkers is low. Their
approach to the goal area is slower because they might form clusters within the
center of the arena. Eventually, they join the cluster in the goal area and join
the wall followers. Therefore, in this setup a high amount of wall followers is the
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better choice. In an extended study, that is in preparation, we have also done
experiments with goals not positioned at the walls. The number of wall followers
decreases for that setting as expected but the qualitative result of our study is
not influenced by the positions of the goal areas.

Concerning the results for the choice experiment (Fig. 5(b) and 7) the small
number of goal finders is explained by the fact that they are not able to distin-
guish between a global and a local goal area because they merely follow the local
gradient. Hence, they are not able to increase fitness (F = G− L). This is also
indicated by the zero median for homogeneous goal finder swarms (Fig. 5(b)).
Still, goal finders might be useful in a heterogeneous swarm to mark the goal
areas and to serve as social seeds that attract others. Compared to the results of
the experiment with only one goal area, the median amount of immobile agents
is higher. Intuitively it seems inappropriate to use any immobile agent because
they never enter the goal area when placed outside of it initially. However, they
are part of many evolved swarm compositions although the optimization algo-
rithm is effective [38] and we also do not enforce that all four behavior types
have to be included in the solution. Thus, additional experiments are required
to investigate the role of immobile agents and to find a sound explanation of
why immobile agents are useful for the swarm in both our model and also in the
natural swarms of honeybees. We can only speculate that immobile agents might
have the functionality of a barrier and might slow down or even block agents
that switch between goals. That way immobile agents might prevent other agents
from visiting the local goal area and hence might stabilize the whole decision-
making process. However, this requires more investigations and will be done in
future work.

8 Conclusion

In this paper we have investigated swarms of agents that are heterogeneous in
their behaviors. The idea is to simplify the swarm system by predefining static
roles for certain swarm fractions. Even for the investigated extreme case without
task switching, the heterogeneous swarm outperforms homogeneous swarms in
the investigated aggregation scenario for the selected, predetermined behavior
types. For now, all our results are based on one set of predetermined behaviors
and one kind of collective task. However, the selection of behaviors was not
arbitrary but inspired by results from biological experiments with juvenile bees.
Still, the generalization of this work is left for future work.

The evolved compositions of behavior types indicate a rather complex underlying
system that creates nontrivial distributions of behaviors which might even be
perceived as counterintuitive. While the behavior types themselves were simple
and predefined here, it is of course an option to determine the behavior types also
by evolutionary computation or other methods of machine learning. However,
for applications of swarm robotics, such as nanorobotics [24], it is attractive to
make use of simple predetermined behaviors.



The effectivity of the evolved behavior compositions is certainly interesting,
raises questions, and allows for different interpretations. While the four behav-
ior types all score low in homogeneous swarms, they allow for a much more
efficient aggregation behavior once combined. Obviously cooperation among dif-
ferent types is crucial and teamwork of a diverse team is essential. A tempting in-
terpretation is that the results might be compared to findings in natural swarms
that rely on certain degrees of leadership [8]. Only leadership is difficult to define
here. The goal-oriented and greedy behavior of the goal finder is not helpful for
the swarm per se. It requires a random walker and a wall follower to make use of
the social seed within the goal area created by a goal finder. Hence, we observe a
sophisticated interplay of agents with different approaches and capabilities that
outperform their homogeneous counterparts as a heterogeneous swarm.
Also note that the use of simulations is potentially the only means to investigate
the concept of predetermined behavioral roles in the natural complex system
of young honeybees. Following the common standards of experiment design in
biology it is not an option to use the same subjects (bees) in several replications
of the experiment. In our case here an initial experiment would be necessary
to label the bee with its behavioral role and in a second experiment we could
create the desired swarm composition of behavior types. However, the bee might
be influenced by the initial experiment and show a different behavior. Hence,
simulations are a useful tool to investigate this complex system of interacting
honeybees.
The results of this study support a core idea of swarm robotics that the in-
terplay of several simple behaviors generates complex behaviors due to multiple
interactions. This case study’s main result is that heterogeneous swarms based on
predetermined behaviors without task switching can perform well. Our approach
is not limited to the study of the BEECLUST algorithm. Also other collective
behaviors can be explored, such as heterogeneity in the stimulus-response func-
tions of bees in their waggle-dance behavior [33]. In future work, we plan to do
a complete sensitivity analysis of the many paramters in our model. In addition,
we plan to work our way towards a generalization of our approach, for exam-
ple, allowing different sets of predetermined or even learned behaviors. Although
this study was guided by the biological inspiration of young honeybees’ behavior,
our future research will focus more on engineering applications of heterogeneous
swarms in (evolutionary) swarm robotics.
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