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Abstract— In multi-modular reconfigurable robotics it is
extremely challenging to develop control software that is able
to generate robust but still flexible behavior of the ‘robotic
organism’ that is formed by several independent robotic mod-
ules. We propose artificial evolution and self-organization as
methodologies to develop such control software. In this article,
we present our concept to evolve a self-organized multi-modular
robot. We decompose the network of feedbacks, that affect the
evolutionary pathway and show why and how specific sub-
components, which are involved in these feedbacks, should
be subject of evolutionary adaptation. Self-organization is
a major component of our framework and is implemented
by a hormone-inspired controller governing the behavior of
singular autonomous modules. We show first results, which were
obtained by artificial evolution with our framework, and give
an outlook of how the framework will be applied in future
research.

I. I NTRODUCTION

Evolutionary multi-modular robotics (EMMR) is a rather
novel field of biology, computer science and engineering.
It outnumbers ‘classical’ evolutionary robotics concerning
technical challenges: Evolving a functional controller for a
predefined fixed robotic morphology is already a challenging
goal to reach [1], [2], [3]. In multi-modular robotics, a huge
variety of robot morphologies are built from a set of joined
robot modules. See Fig. 1 for an example of such a robotic
organism. Each of these robots is controlled by a control
program, which – in the joined organism – fuses to one meta-
controller that moves the whole body. It is not just the set
of these controllers that determines the final behavior of the
organism, but also the set of physical constraints that are
posed by the way of how the modules are coupled (joints,
forces, . . . ).

In our EMMR approach, the robotic controllers should
evolve together with the body shape. In addition, controllers
of single modules should evolve in a way which enables
them to build the joined organism shape from a former
unconnected (swarm) mode of operation. We suggest a bio-
inspired self-organized process [4], [5] that governs the
organism formation in a decentralized way. As it is possible,
that robotic modules fail or end up in an unfavorable place
in the organism, the organism’s control should be extremely
robust but still flexible to allow dynamic replacement or
displacement of single robotic modules during runtime.
Thus, our desired controllers, that we plan to evolve, are
well described by the following characteristics: decentralized
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Fig. 1. Exemplary configuration of 9 robots arranged and coupled in a
3×3 layout in our proposed EMMR approach. The process that is able to
form this body shape from a swarm of autonomously moving singlerobot
modules has to be evolved. Artificial evolution should then also generate
controllers that are able to move this robotic organism in a self-organized
way. Multiple feedback loops, that allow self-organization to work at specific
points of control, is proposed to enhance and support artificial evolution.

control, self-organization, robust behavior, flexibilityand
scalability. These characteristics are typical for ‘swarm-
intelligent’ systems, therefore we attribute our organism
formation process and organism movement process to be a
variant of evolutionary swarm robotics [6], [7].

Several approaches have been proposed to achieve this
goal: The studies of Shen et al. [8] suggest a framework
in which artificial hormones, that resemble hop-counts and
messages exchanged among modules, are used instead of
hard-coded IDs and ‘gait table’ numbers to coordinate
a multi-modular robotic system. In [9], a robotic swarm
mimics pheromone excretion of biological organisms and
achieves swarm control in doing so. Also in [10] a hop-
count-based system is used to control a robot swarm. Similar
methods of hop-counts, which form linear gradients in the
organism, were also used in [11] to construct dense objects
from autonomously moving sub-units. A continuous gradient
approach to navigation of modules based on non-linear
gradients was investigated in [12] and in [13] within the
I-SWARM project [14]. Based on these swarm techniques,
we elaborated a hormone-inspired control paradigm for body
formation and body control, aimed for our multi-modular
robots in the current EU-funded projects SYMBRION [15]
and REPLICATOR [16].

In this article, we describe the artificial homeostatic hor-
mone system (AHHS) which we applied successfully to



Fig. 2. The feedback loops that affect the evolution of organism shapes in
our proposed EMMR system.

control a single robot in simulation [17] and in robotic hard-
ware [18]. Using single robots, an AHHS was successfully
evolved to move with a ‘screw drive’, which is non-trivial
to control, to avoid obstacles, and to explore the arena [17].
Currently, we develop a system of artificial evolution (AE),
that allows an elaboration of this AHHS controller: Our novel
controller will be able to control the self-organized body
formation process as well as the decentralized control of
locomotion of joined robotic organisms. In the following,
we describe the concept of our AHHS and discuss the
major feedback loops (Fig. 2) that emerge within the system
of AE and organism formation. Some of these feedback
loops are not existent in ‘classical’ evolutionary robotics
(ER) concerning single robots, others are missing in non-
evolutionary multi-modular robotics.

The expected main advantages of this approach compared
to others (e.g., classic approaches, artificial neural networks)
are an intrinsic spatiality (hormone gradients in connected
robots) and a supposed high evolvability (smooth fitness
landscapes through mutations that gradually change the be-
havior). Explicitly defined hormone gradients, that span the
whole robot organism, are exploited in the robot organism
morphogenesis. The controller of the robot organism is
embodied due to the hormone concentrations that are stored
in the real robot modules. Our hormone controller defines
the resulting behavior through hormone production rates,
decay rates, and hormone interaction rules that are gradually
changed through mutations and, thus, only gradually change
the behavior. Therefore, this approach is promising to be
successfully applied in EMMR scenarios.

In the following, we identify six feedback loops: classic
control, learning, evolution, controller morphogenesis,robot
organism morphogenesis, and body motion. In first case
studies, we have tested the classic control loop in robotic
hardware and in simulation [18], [17] and evolution in sim-
ulation [17]. In addition, the controller morphogenesis and
the robot organism morphogenesis were tested in preliminary
studies.

II. A RTIFICIAL HOMEOSTATIC HORMONE SYSTEM

The basic characteristics and the implementation of our
bio-inspired controller are described in general in [19]. The
idea of an AHHS controller is inspired by second-messengers
which communicate and ‘compute’ stimuli received through

membrane-bound receptors in evolutionary ‘simple’ unicel-
lular organisms (protozoa), bacteria and slime mold. In
higher life-forms, such cell messengers act inside of cells
and hormones allow to broadcast communication between
tissues.

Basically, stimuli received by robot sensors trigger the
release of virtual hormones in an AHHS controller. The inner
body of a single robot module is spatially represented by
(virtual) compartments. Each sensor triggers the production
of a specific hormone in the compartment with which it is
associated. Virtual hormones decay over time, and they dif-
fuse to neighboring compartments. This allows information
about current and past sensor activation to spread throughout
the whole virtual ‘internal body’ of the robot. In an AHHS,
hormones interact with each other: One hormone potentially
increases or decreases the level of another hormone and it
is able to alter the sensitivity of sensors and/or actuators.
Finally, at least one hormone has to activate one of these
available actuators to manifest the robot’s final behavior.

As a result of this actuation, future sensor stimulation is
altered. Hence, a sensor–controller–actuator feedback loop
emerges. From a cybernetic point of view [20], our AHHS
controller actuates the robot such that specific hormone levels
are kept at a homeostatic state.

A. Artificial genome

Evolution provides an essential feedback loop in our pro-
posed EMMR. As evolution always operates on a genome,
which is the ‘substrate’ for adaptation, the specific config-
uration of an AHHS has to be kept persistent in a data
structure that we call ‘genome’. From this data structure, the
AHHS controller has to be parametrized. The genome of our
AHHS consists of two logical entities:hormone chromosome
andrule chromosome. The hormone chromosome holds only
one gene per hormone. In contrast, the rule chromosome
contains an arbitrary number of genes for each hormone.
Each hormone excretion, each type of hormone-to-hormone
interaction and each actuator activation by a hormone is
described in a separate rule gene.

In the following, we give a detailed description of the data
structure that we developed for holding the needed genetic
information of an AHHS (reprinted from [17]):

The hormone chromosome contains the following parame-
ters:

• hormone ID
• fixed decay rate
• diffusion coefficient
• maximum value of hormone(value at which a saturation

is reached)
• base production rate(amount that is produced per time

step without sensory stimulation)

The rule chromosome contains the following parameters:

• rule type: condition to be met or triggering action

1) always:Action triggered independent from thresh-
old σ



2) greater than: Action triggered if greater than
thresholdσ

3) smaller than: Action triggered if smaller than
thresholdσ

• trigger type: type of triggered action (hormone concen-
tration θ, actuator valueα)

1) never triggered: No action performed.
2) sensor influences hormone:if (γ(t) > σ) then

θ(t + 1) = θ(t) + γ(t)δ + β (sensor valueγ)
3) hormone influences actuator:if (θ(t) > σ) then

α(t + 1) = α(t)δ + β

4) hormone influences other hormone:if (θ1(t +
1) > σ) thenθ2(t + 1) = θ2(t) + θ1(t)δ + β

5) hormone influences itself: θ(t + 1) = θ(t) +
θ(t)δ + β

All these values are integer values allowing fast executionof
these rules on limited (embedded) hardware.

III. F EEDBACK 1: CLASSIC CONTROL

The direct feedback loop between the controller and the
behavior represents the classic approach of control theory. In
control theory this loop is interpreted as a negative feedback
because an error value is determined by subtracting the
measured system state from the desired state. This error value
is used to determine the new input. The controller checks the
difference between the desired state and the measured stateof
the whole system (robot organism and environment) through
its sensors. If there is a difference the controller changesthe
‘system input’ (e.g., actuator input signals) that is fed into
the system.

IV. FEEDBACK 2: LEARNING

The feedback loop controller–behavior–evaluation repre-
sents the field of unsupervised machine learning. The robot
is interpreted as an agent that has to take actions in an envi-
ronment in order to maximize a reward. The robot evaluates
its behavior online, changes its controller and, hence, its
behavior. There is a huge variety of possible approaches. An
artificial neural network could be trained online, standard
reinforcement learning techniques such as Q-learning could
be applied, or even our novel controller approach could
be used. The rules of such an AHHS controller could be
optimized through learning. This could be done as a complete
learning task from scratch or by optimizing an evolved
controller.

V. FEEDBACK 3: EVOLUTION

The loop controller–behavior–evaluation–evolution–
genome is of high importance for our standard AE [21].
Hence, we produce a population of robot controllers that
are evaluated and selected based on their fitness. A new
generation is generated through mutation and recombination
of the controllers.

Currently we have implemented a naive genetic algorithm
to test first evolutionary approaches. In Fig. 3 the class

diagram of our software design is shown. It consists basically
of three classes:EvolutionManager class (maintains the
whole evolutionary process) which keeps a population of
type Evolvable class (contains evolution specific values
such as fitness values) which holds a collection of type
AbstractController (a container for the actual specific
robot controller) for each module in the robot organism.
Usually we have homogeneous organisms, that is, we have
identical controllers for each robot module in the organism.

The currently evolved controller design is our AHHS
controller. However, the software framework is independent
of the actual used controller design as far as possible –
other approaches, such as artificial neural networks, would
be possible as well with few adjustments. Typically the first
evolution run is initiated with a small population (20 to
30 individuals) of randomly generated AHHS controllers.
These random controllers generate rather erratic behavior
that is evaluated in simulation. The ‘Symbricator Simula-
tor’, that was developed in both EU-projects REPLICATOR
and SYMBRION, is based on the Delta3D open-source
gaming/simulation engine [22]. The simulator provides a
full simulation of physics, which is indispensable as the
locomotion of our multi-robot organisms will usually depend
on friction and statics. In addition, it is possible to import
the CAD data of the current robot prototype design. For a
limited time the behavior of the robot organism is evaluated.
For example, in case we evolve simple collision avoidance
behavior the evaluation can be based on the covered dis-
tance. Following [23] this type of fitness function is called
‘aggregate fitness function’ because it selects for high-level
success (instead of rewarding any kind of motion).

The key challenges in the evolutionary approach to modu-
lar robotics are the high computational costs of the controller
evaluations and the selection of an appropriate controller
design. Due to computational costs only low numbers of
generations are feasible within which a valid controller needs
to be found. Thus, we need a controller that is not only
able to represent the desired behavior, but also a controller
that shows high evolvability. With ‘high evolvability’ we
refer to a fitness landscape that is as smooth as possible
which is the preferred shape to avoid local optima. The
shape of the fitness landscape is partially influenced by the
controller design in connection with the mutation operator
but also by the environment. Discrete (stepwise) changes in
the controller by the mutation operator should be avoided,
because the application of the mutation operator would most
likely result in very different behavior and, thus, in very
different fitness values. However, typically there is a trade-off
between increasing the size of the search space and avoiding
discrete changes through mutation.

VI. FEEDBACK 4: CONTROLLER MORPHOGENESIS

In our AHHS controller, the compartmentalization of the
inner body of a single robot module is an important feature.
It allows ‘embodiment‘ of the controller, because sensors
are allowed to trigger hormone excretion only in those
compartments that are spatially associated with the sensor



Fig. 3. Software design of our AE framework. It is embedded intothe projects’ ‘Symbricator Simulator’ which is based on the Delta3D open-source
gaming/simulation engine [22].

location on (or in) the robot’s body. Only hormones of the
same compartment interact, this way the computation, that is
performed in the AHHS, is localized. Therefore, the structure
formed by the compartments is important for the behaviors
generated by the AHHS. We made the compartmentalization
also a subject of AE and introduced another ‘rule chromo-
some’ (see section II-A).

This chromosome contains genes that parametrize a pro-
cess that forms the compartment structure. One way to
achieve internal compartmentalization, is to use a different
set of AHHS rules in a ‘constructor’ phase before the robot
controller is started. During this phase, hormone values
trigger rules in the AHHS from this third chromosome.
The only difference from the second ‘rule chromosome’
(described in section II-A) is that hormone values in this
phase do not trigger an actuator of the robot. Instead, they
trigger a division of one compartment into two compart-
ments, similar to cell divisions in biological organisms: At
the beginning, the AHHS starts with just one compartment.
This compartment is then successively divided depending
on local hormone values. Hence, a self-organized process
creates the compartment structure, which is later affecting
the robot’s behavior.

AE alters the gene information on this chromosome by
altering, deleting, and duplicating rules, by changing the
initial starting conditions or by changing the length of the
transient period. Fig. 4 shows exemplarily how the compart-
ment structure is altered by a combination of two loci for
point-mutations.

VII. F EEDBACK 5: ROBOT ORGANISM MORPHOGENESIS

When it comes to building and reconfiguring robot or-
ganisms, that consist of autonomous robot modules, we
suggest that our AHHS is able to perform this task in a
self-organized manner. Thus, the feedback loop ‘controller
– body shape’ (Fig. 2) emerges automatically. The main
problem concerning the morphology of the robot organism
is the trade-off between robustness and flexibility.

Fig. 4. Internal compartmentalization of the robot. This important structural
feature in an AHHS controller is mutated by altering ‘layout rules’. This
figure shows 9 configurations that result from a combination ofmutations
of 2 genes (rules).

We think that there is no conceptional difference between
starting to build a robot organism out of a swarm of single
modules, on the one hand, and the reconfiguration process,
on the other hand. In most cases of both processes, it is a
precondition that an additional number of nearby single robot
modules is available. If a join or a change of the morphology
of the organism body shape is triggered by the environment,
this trigger event has to be perceived by at least one of
the modules and it needs to be communicated to the other
modules.

Such a process of body formation is depicted in Fig. 5.
In step one, a module (marked by an exclamation point)
detects a situation which is infeasible for a single module,
in other words, there is a trigger or a seed for the action of
joining together. This perception is communicated to nearby
single robots. These modules dock on the opposite of the



Fig. 5. The development of the body formation in an EMMR. The process
of the progress from single module formation in a swarm to robotorganism
with legs is depicted in four steps. One possible way of achieving this
with our AHHS is denoted as a schematic graph of hormone values of two
hormones in step 2. For further explanation see text.

detected seed. Starting from the module which started the
joining progress, for example, a simple line is formed.

In such a joined organism (Fig. 5: step two), further
environmental stimulation triggers the production of other
hormones inside the organism, which consists of connected
modules. This process results in the emergence of a gradient
of hormone concentrations within the organism. The still
existing sensor input which initially triggered the body
formation can now serve as a trigger for a differentiation into
a head module and a tail module. Furthermore, a threshold of
a ‘head-’ and a ‘tail-hormone’ determines, for example, the
positions of legs in the middle of the organism (Fig. 5: step
three). Despite this threshold is predefined, the body shape
of the robot organism is not determined but influenced by
environmental inputs. In this way, different body shapes are
established by a self-organized reconfiguration process. The
building of legs is based on the same principles as the process
of building the main body.

We prefer this approach of exploiting self-organization
processes as the main design paradigm in favor of non-
adaptive approaches (e.g., predefined shapes) because the
latter would lack any flexibility. The approach of self-
organization described here in connection with evolutionary
methods automatically influences the shape of the robot or-
ganism when a new or changed seed is detected by a (joined
or free) module. The possibility of self-reconfiguration gives
the organism the needed plasticity and adaptability.

VIII. F EEDBACK 6: BODY MOTION

In our AHHS control paradigm, there is, in principal, no
difference between motion of individual robot modules and
of joined robotic organisms. The parallel behavior of single
modules sums up to the organisms behavior. Of course, there
is a demand of coordination among the modules to achieve
a regular motion of the organism. To allow this, hormones
diffuse to neighboring robot modules, as soon as modules
dock to each other. Hence, the internal body of the organism

is structured (compartmentalized) as it is the case for a single
robot. Therefore, a robot organism consists of two levels of
compartmentalization. There is the logical level inside each
single module and the physical level of connected modules.

To demonstrate the diffusion of hormones between robot
modules, we performed AE with already joined robot organ-
isms that were allowed to actuate only their ‘hinges’, which
are the main actuators that bend the robot modules with an
angle of±90◦ from the default configuration. No wheels or
screw-drives were allowed to be activated. In the following,
we shortly describe an exemplary incremental course of AE
in our framework:

A. Step 1: The first oscillator

In a first period, we coupled two modules. For this
organism, the only chance to move was to evolve a set
of rules in the AHHS of both modules that actuates both
hinges in an ‘oscillatory way’. We used the distance the
organism moved within 300 time steps as fitness function.
The fittest controllers were selected and were subject to
point mutation and cross-over producing 20 offspring. The
three best individuals were moved to the next generation
without any change (elitism) and two new AHHS controllers
were generated randomly from scratch in each generation.
A behavior that significantly moved the organism evolved
within the first 10 generations in a population of 25 AHHS
controllers. It increased its performance within the next 20
generations significantly. Fig. 6 shows snapshots of this
organism’s behavior.

B. Step 2: Motion of bigger organisms

We implanted this oscillating AHHS into robot organisms
of increasing size, by just adding robot modules at one end
of the organism. All of these organisms were able to move
slowly. The speed was significantly reduced compared to the
prior used, smaller organisms. After 10-15 generations, the
motion speed recovered to almost the prior level again, sug-
gesting that AE successfully adapted the pre-evolved AHHS
controller to the new body size. Finally, we ended up with a
long line of seven connected robots, which nicely moved
across the simulated arena in a caterpillar-like movement
pattern. Fig. 7 shows snapshots of this organisms behavior.

C. Step 3: Motion of more complex organisms

After these successful evolution experiments, we con-
structed more complex (nested) organism shapes, into which
we implanted the pre-evolved AHHS controller described in
subsection VIII-A. All of these shapes evolved well-adapted
AHHS controllers that were able to move the organism
in the arena. We want to discuss here just one example
that underlines how the body shape influences the body
movement: Fig. 8a and Fig. 8b show two different motion
strategies that evolved for the same body shape successively:
First, the outer two branches of the T-shaped organism move
the organism by oscillatory contraction and release of their
hinge while the ‘tail’ in the back pushed the organism further
as well. The whole body was laying almost flat on the floor



Fig. 6. Evolved motion of two joined robot modules in the projects’ ‘Symbricator Simulator’. The hinges of the two modules are contracted in an
oscillations by the evolved AHHS. This pushes the organism forward.

Fig. 7. Evolved motion of several joined robot modules in the projects’ ‘Symbricator Simulator’. The hinges of joined modulesare contracted in delayed
oscillations by the evolved AHHS. A caterpillar-like motionpattern was finally evolved.

(Fig. 8a). Then, a different movement pattern emerged in
evolution: The central module contracted its hinge which
erected the whole organism. This way the three branches
of the T-shaped body could act like legs and the ‘tripod’
successfully moved through the arena (Fig. 8b).

IX. D ISCUSSION

In the paper at hand, we describe several feedback loops
that affect body formation and body movement in an EMMR
system. Based on the involved feedbacks, we characterize
six levels of adaptation that are exploited by ourselves
to generate a bio-inspired adaptive reconfigurable robotic
system:

• Classic control: The controller–behavior feedback loop
is always present in any reactive agent, thus also in any
autonomous robot that is able to perform behavior of
any kind in its environment. We did not elaborate on
this ‘classic’ feedback loop in the concept presented in
this article.

• Learning: This feedback adapts the controller during
runtime, based on the recent dynamics of the so called
‘reward’, ‘fitness’ or ‘cost’ function. We did not elab-
orate on this feedback loop in the concept presented in
this article.

• Evolution: In this feedback loop, the main concern is
the feasibility due to high computational costs. Self-
organizing processes generated by the general controller
design, such as homeostatic tendencies in the hormone
controller, need to be leveraged as well to obtain smooth
fitness landscapes and to decrease the number of gen-
erations that are necessary before the desired behavior
is evolved.

• Controller morphogenesis: We showed in this article
that the internal structure of the AHHS controller arises
from a dynamic self-organized process, that is driven by
the AHHS itself. Hence, it is subject to AE, together

Fig. 8. Two different motion patterns evolved successively with the same
body shape. a: flat body, oscillators move peripheral hinges like fins. b:
erected posture of the organisms, peripheral robots moved like legs.



with the other rule set that acts in the AHHS. This
compartmental layout is an essential feature to allow
‘embodiment’ in our approach.

• Robot morphogenesis:For the feedback loop of the
controller and the body shape we propose a dynam-
ical, self-organized process of the body shape which
influences the characteristics of the controller. When
single modules are docking to or release from the robot
organism the values of the hormones are altered and
therefore the behavior of the controller itself changes.
We think that this approach to a self-organized body
formation process in combination with evolutionary
learning of the controller would be able to perform the
demanding task of flexible body shape.

• Decentralized body motion: Body-motion of joined
organisms was successfully achieved by AHHS control
and by our implementation of AE. Again here, it is
a self-organized process – consisting of positive and
negative localized feedbacks and time delays – that
achieves the desired motion patterns.

In our current research projects, we plan to implement
all six feedback loops, that are described above, in real
robotic hardware and in a sophisticated simulation software,
that closely depicts the physical abilities and constraints,
as well as the computational abilities of our final targeted
robots [22]. Using this software, we already successfully
implemented our AHHS controllers, evolved them to perform
adaptive behavior on singular robots and in joined robotic or-
ganisms. Morphogenesis of the controller and morphogenesis
of the robot organism will be our next main focus, as well
as enhancing the efficiency, the computational power and the
evolvability of our AHHS controllers. Also the necessity of
all six feedback loops should be investigated. At the moment,
each feedback loop is investigated separately. For example,
the body motion was investigated with fixed predefined body
shapes. In case of learning and evolution, we note that
it is not necessary to have both of them in the system.
In principle, they just differ in their time scales. Learning
is achieved during a life time while evolution lasts over
generations. For example, there might be scenarios in which
learning does not improve the performance significantly
because no optimization during runtime is needed.

However, all feedback loops interact with each other in a
complex way which is the key point of this approach. For
example, the change of the body shape through robot mor-
phogenesis influences the controller and the body motion.
These intertwined feedback loops encourage and challenge
evolution to generate adaptive behavior.

We conclude that our AHHS approach allows self-
organization on multiple levels of the organism’s formation
and movement process. Our evolutionary framework alters
the whole genome, which encodes for almost all parameters
affecting the feedback networks that are mentioned above.
This genome-based evolution allows us to evolve controller
layouts, controller performance rules, virtual physics and
virtual chemistry of hormones, organism formation and or-
ganism movement all-together in parallel. We think, this

multi-level adaptation is essential to create a functioning
EMMR approach, as it is desired in the projects SYMBRION
and REPLICATOR.
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