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Abstract— In  multi-modular reconfigurable robotics it is
extremely challenging to develop control software that is able
to generate robust but still flexible behavior of the ‘robotic
organism’ that is formed by several independent robotic mod-
ules. We propose artificial evolution and self-organization as
methodologies to develop such control software. In this article,
we present our concept to evolve a self-organized multi-modular
robot. We decompose the network of feedbacks, that affect ¢
evolutionary pathway and show why and how specific sub-
components, which are involved in these feedbacks, should
be subject of evolutionary adaptation. Self-organization is
a major component of our framework and is implemented
by a hormone-inspired controller governing the behavior of
singular autonomous modules. We show first results, which were
obtained by artificial evolution with our framework, and give
an outlook of how the framework will be applied in future
research.

Fig. 1. Exemplary configuration of 9 robots arranged and cijph a
I. INTRODUCTION 3x3 layout in our proposed EMMR approach. The process thatles tab

. . . . form this body shape from a swarm of autonomously moving singfbet
Evolutionary multi-modular robotics (EMMR) is a rather modules has to be evolved. Artificial evolution should thespajenerate

novel field of biology, computer science and engineeringontrollers that are able to move this robotic organism inlaaganized

It outnumbers ‘classical’ evolutionary robotics concemi way. Multiple feedback loops, that allow self-organizatto work at specific
. . . points of control, is proposed to enhance and support aatifevolution.

technical challenges: Evolving a functional controller &

predefined fixed robotic morphology is already a challenging

goal to reach [1], [2], [3]. In multi-modular robotics, a heig | i L b behavior. flexibiliand
variety of robot morphologies are built from a set of joineocomro’ self-organization, robust behavior, flexibilign

robot modules. See Fig. 1 for an example of such a robot?tcala_b'“tX' These charactenstics are _typlcal for swarm
telligent’ systems, therefore we attribute our organism

organism. Each of these robots is controlled by a contrgl-' ) q ) b
program, which — in the joined organism — fuses to one met Qrmat|on Process and organism mpvement process to be a
ariant of evolutionary swarm robotics [6], [7].

controller that moves the whole body. It is not just the sef ] )
of these controllers that determines the final behavior ef th Several approaches have been proposed to achieve this
organism, but also the set of physical constraints that af9al: The studies of Shen et al. [8] suggest a framework
posed by the way of how the modules are coupled (jointd) Which artificial hormones, that resemble hop-counts and
forces, ...). messages exchanged among modules, are used ins_tead of
In our EMMR approach, the robotic controllers should’@d-coded IDs and ‘gait table’ numbers to coordinate
evolve together with the body shape. In addition, contrslle @ Multi-modular robotic system. In [9], a robotic swarm
of single modules should evolve in a way which enable§limics pheromone excretion of biological organisms and
them to build the joined organism shape from a formeRchieves swarm control in doing so. Also in [10] a hop-
unconnected (swarm) mode of operation. We suggest a pigRuNt-based system is used_to control_a robot swarm. Slmllar
inspired self-organized process [4], [5] that governs th@ethqu of hop-counts, wr_nch form linear gradients in .the
organism formation in a decentralized way. As it is possiblrganism, were also usgd in [11] to construct dense ob!ects
that robotic modules fail or end up in an unfavorable plac§0m autonomously moving sub-units. A continuous gradient
in the organism, the organism’s control should be extremeRPProach to navigation of modules based on non-linear
robust but still flexible to allow dynamic replacement ordradients was investigated in [12] and in [13] within the
displacement of single robotic modules during runtime!"SWARM project [14]. Based on these swarm techniques,
Thus, our desired controllers, that we plan to evolve, ar&® elaborated a hormone-inspired control paradigm for body

well described by the following characteristics: decditesl formation and body control, aimed for our multi-modular
robots in the current EU-funded projects SYMBRION [15]

* Artificial Life Lab of the Department of Zoology, Karl- and REPLICATOR [16]_
Franzens University Graz, 8010 Graz, Univarsplatz 2, . . . e .
Austria{t homas. schmi ckl, juergen. stradner In this article, we describe the artificial homeostatic hor-
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membrane-bound receptors in evolutionary ‘simple’ unicel

lular organisms (protozoa), bacteria and slime mold. In
higher life-forms, such cell messengers act inside of cells
and hormones allow to broadcast communication between
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£ g tissues.
i g Basically, stimuli received by robot sensors trigger the
release of virtual hormones in an AHHS controller. The inner
Organism behaviour body of a single robot module is spatially represented by
. @5:,:1;2‘:72“,/ (virtual) compartments. Each sensor triggers the prodnocti
Fig. 2. The feedback loops that affect the evolution of oigmnshapes in of a S.peCIfIC hormone in the Compartment. with which it IS.
our proposed EMMR system. associated. Virtual hormones decay over time, and they dif-

fuse to neighboring compartments. This allows information
about current and past sensor activation to spread thratigho
control a single robot in simulation [17] and in robotic hard the whole virtual ‘internal body’ of the robot. In an AHHS,
ware [18]. Using single robots, an AHHS was successfullipormones interact with each other: One hormone potentially
evolved to move with a ‘screw drive’, which is non-trivial increases or decreases the level of another hormone and it
to control, to avoid obstacles, and to explore the arena [17§ able to alter the sensitivity of sensors and/or actuators
Currently, we develop a system of artificial evolution (AE),Finally, at least one hormone has to activate one of these
that allows an elaboration of this AHHS controller: Our nloveavailable actuators to manifest the robot’s final behavior.
controller will be able to control the self-organized body As a result of this actuation, future sensor stimulation is
formation process as well as the decentralized control @eftered. Hence, a sensor—controller—actuator feedbagk lo
locomotion of joined robotic organisms. In the following,emerges. From a cybernetic point of view [20], our AHHS
we describe the concept of our AHHS and discuss theontroller actuates the robot such that specific hormoreddev
major feedback loops (Fig. 2) that emerge within the systeire kept at a homeostatic state.
of AE and organism formation. Some of these feedback Artificial genome
loops are not existent in ‘classical’ evolutionary robstic " 9
(ER) Concerning Sing|e robotsy others are missing in non- Evolution prOVideS an essential feedback |00p in our pro-
evolutionary multi-modular robotics. posed EMMR. As evolution always operates on a genome,

The expected main advantages of this approach Compar‘éaiCh is the ‘substrate’ for adaptation, the SpeCiﬁC Config-
to others (e.g., classic approaches, artificial neural ogsy ~ uration of an AHHS has to be kept persistent in a data
are an intrinsic spatiality (hormone gradients in conrgctestructure that we call ‘genome’. From this data structure, t
robots) and a supposed high evolvability (smooth fitnes8HHS controller has to be parametrized. The genome of our
landscapes through mutations that gradually change the HHHS consists of two logical entitiestormone chromosome
havior). Explicitly defined hormone gradients, that spam thandrule chromosomeThe hormone chromosome holds only
whole robot organism, are exploited in the robot organisfAN€ gene per hormone. In contrast, the rule chromosome
morphogenesis. The controller of the robot organism igontains an arbitrary number of genes for each hormone.
embodied due to the hormone concentrations that are stofe@ch hormone excretion, each type of hormone-to-hormone
in the real robot modules. Our hormone controller define§iteraction and each actuator activation by a hormone is
the resulting behavior through hormone production rate§escribed in a separate rule gene.
decay rates, and hormone interaction rules that are gigdual n the following, we give a detailed description of the data
changed through mutations and, thus, only gradually changucture that we developed for holding the needed genetic
the behavior. Therefore, this approach is promising to p@formation of an AHHS (reprinted from [17]):
successfully applied in EMMR scenarios.

In the following, we identify six feedback loops: classicThe hormone chromosome contains the following parame-
control, learning, evolution, controller morphogenesitjot -
organism morphogenesis, and body motion. In first case
studies, we have tested the classic control loop in robotic *
hardware and in simulation [18], [17] and evolution in sim- *
ulation [17]. In addition, the controller morphogenesisian
the robot organism morphogenesis were tested in preliminar

hormone ID

fixed decay rate

« diffusion coefficient

« maximum value of hormor{galue at which a saturation

studies is reached)
' « base production ratéamount that is produced per time
Il. ARTIFICIAL HOMEOSTATIC HORMONE SYSTEM step without sensory stimulation)

The basic characteristics and the implementation of odf® rule chromosome contains the following parameters:
bio-inspired controller are described in general in [1%eT  « rule type condition to be met or triggering action
idea of an AHHS controller is inspired by second-messengers 1) always: Action triggered independent from thresh-
which communicate and ‘compute’ stimuli received through old o



2) greater than: Action triggered if greater than diagram of our software design is shown. It consists bdgical
thresholdo of three classe€vol uti onManager class (maintains the

3) smaller than: Action triggered if smaller than whole evolutionary process) which keeps a population of
thresholdo type Evol vabl e class (contains evolution specific values

. trigger type type of triggered action (hormone concen-such as fitness values) which holds a collection of type
tration #, actuator valuex) Abst ract Cont r ol | er (a container for the actual specific
robot controller) for each module in the robot organism.

Usually we have homogeneous organisms, that is, we have
identical controllers for each robot module in the organism
The currently evolved controller design is our AHHS

1) never triggered: No action performed.

2) sensor influences hormoneif (y(t) > o) then
O(t+1)=6(t) +~(t)d + B (sensor valuey)

3) hormone influences actuator:if (6(t) > o) then

a(t+1) = a(t)s + 3 controller. However, the software framework is indeper_uden
4) hormone influences other hormone:if (6; (¢ + of the actual used controller _dleIS|gn as far as possible —

1) > o) thenfy(t + 1) = O5(t) + 01 (£)5 + other approaches, suph as art|f|C|aI neural ngtworks, wpuld
5) hormone influences itself: §(¢t + 1) = 6(t) + be p0§3|ble as'wgll.\./wth few adjustments. Typ|c§1IIy the first

0(t)s + 8 evolution run is initiated with a small population (20 to

30 individuals) of randomly generated AHHS controllers.
These random controllers generate rather erratic behavior
that is evaluated in simulation. The ‘Symbricator Simula-
tor’, that was developed in both EU-projects REPLICATOR
and SYMBRION, is based on the Delta3D open-source
. FEEDBACK 1: CLASSIC CONTROL gaming/simulation engine [22]. The simulator provides a
The direct feedback loop between the controller and thieill simulation of physics, which is indispensable as the
behavior represents the classic approach of control théory locomotion of our multi-robot organisms will usually dejpen
control theory this loop is interpreted as a negative feeklbaon friction and statics. In addition, it is possible to impor
because an error value is determined by subtracting thiee CAD data of the current robot prototype design. For a
measured system state from the desired state. This errg valimited time the behavior of the robot organism is evaluated
is used to determine the new input. The controller checks ther example, in case we evolve simple collision avoidance
difference between the desired state and the measuredttatbehavior the evaluation can be based on the covered dis-
the whole system (robot organism and environment) throughnce. Following [23] this type of fitness function is called
its sensors. If there is a difference the controller chariges ‘aggregate fitness function’ because it selects for hightle
‘system input’ (e.g., actuator input signals) that is fetbin success (instead of rewarding any kind of motion).
the system. The key challenges in the evolutionary approach to modu-
lar robotics are the high computational costs of the colatrol
evaluations and the selection of an appropriate controller
The feedback loop controller-behavior—evaluation repradesign. Due to computational costs only low numbers of
sents the field of unsupervised machine learning. The robgénerations are feasible within which a valid controllegde
is interpreted as an agent that has to take actions in an enig- be found. Thus, we need a controller that is not only
ronment in order to maximize a reward. The robot evaluatesble to represent the desired behavior, but also a controlle
its behavior online, changes its controller and, hence, ithat shows high evolvability. With ‘high evolvability’ we
behavior. There is a huge variety of possible approaches. Aefer to a fitness landscape that is as smooth as possible
artificial neural network could be trained online, standardvhich is the preferred shape to avoid local optima. The
reinforcement learning techniques such as Q-learningdcoushape of the fitness landscape is partially influenced by the
be applied, or even our novel controller approach couldontroller design in connection with the mutation operator
be used. The rules of such an AHHS controller could bbut also by the environment. Discrete (stepwise) changes in
optimized through learning. This could be done as a completee controller by the mutation operator should be avoided,
learning task from scratch or by optimizing an evolvedecause the application of the mutation operator would most
controller. likely result in very different behavior and, thus, in very
different fithess values. However, typically there is a é-adf
between increasing the size of the search space and avoiding
The loop controller—behavior—evaluation—evolution-discrete changes through mutation.
genome is of high importance for our standard AE [21].
Hence, we produce a population of robot controllers that VI.
are evaluated and selected based on their fithess. A newln our AHHS controller, the compartmentalization of the
generation is generated through mutation and recombmatianner body of a single robot module is an important feature.
of the controllers. It allows ‘embodiment’ of the controller, because sensors
Currently we have implemented a naive genetic algorithrare allowed to trigger hormone excretion only in those
to test first evolutionary approaches. In Fig. 3 the classompartments that are spatially associated with the sensor

All these values are integer values allowing fast execubion
these rules on limited (embedded) hardware.

IV. FEEDBACK 2: LEARNING

V. FEEDBACK 3: EVOLUTION

FEEDBACK 4: CONTROLLER MORPHOGENESIS
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Fig. 3. Software design of our AE framework. It is embedded iht® projects’ ‘Symbricator Simulator’ which is based on thdt&D open-source
gaming/simulation engine [22].

Gene 1 (3 different values)

location on (or in) the robot’s body. Only hormones of the
same compartment interact, this way the computation, shat i
performed in the AHHS, is localized. Therefore, the streestu
formed by the compartments is important for the behaviors
generated by the AHHS. We made the compartmentalization
also a subject of AE and introduced another ‘rule chromo-
some’ (see section II-A). v
This chromosome contains genes that parametrize a pro-
cess that forms the compartment structure. One way to
achieve internal compartmentalization, is to use a differe
set of AHHS rules in a ‘constructor’ phase before the robot
controller is started. During this phase, hormone values
trigger rules in the AHHS from this third chromosome.
The only difference from the second ‘rule chromosome’
(described in section 1I-A) is that hormone values in this
phase do not trigger an actuator of the robot. Instead, the o o
tigger a division of one compartment into two compartf %, e comparmenalzatonof e abet. his et
ments, similar to cell divisions in biological organismst A figure shows 9 configurations that result from a combinatiomatations
the beginning, the AHHS starts with just one compartmengf 2 genes (rules).
This compartment is then successively divided depending
on local hormone values. Hence, a self-organized process

creates the compartment structure, which is later affgctin \ya think that there is no conceptional difference between

the robot's behavior. , _ starting to build a robot organism out of a swarm of single
AE alters the gene information on this chromosome by, jes on the one hand, and the reconfiguration process,

altering, deleting, and duplicating rules, by changing thg, e other hand. In most cases of both processes, it is a
initial_ Staf“”g con(_jitions or by changing the length of the&recondition that an additional number of nearby singletob
transient period. Fig. 4 shows exemplarily how the compari, g jes is available. If a join or a change of the morphology
mgnt struct_ure is altered by a combination of two loci forof the organism body shape is triggered by the environment,
point-mutations. this trigger event has to be perceived by at least one of
VIl. FEEDBACK 5: ROBOT ORGANISM MORPHOGENESIS the modules and it needs to be communicated to the other

When it comes to building and reconfiguring robot or-modules.
ganisms, that consist of autonomous robot modules, we Such a process of body formation is depicted in Fig. 5.
suggest that our AHHS is able to perform this task in @n step one, a module (marked by an exclamation point)
self-organized manner. Thus, the feedback loop ‘controllaletects a situation which is infeasible for a single module,
— body shape’ (Fig. 2) emerges automatically. The maim other words, there is a trigger or a seed for the action of
problem concerning the morphology of the robot organisrjoining together. This perception is communicated to ngarb
is the trade-off between robustness and flexibility. single robots. These modules dock on the opposite of the

Gene 2 (3 different values)




is structured (compartmentalized) as it is the case forglesin
robot. Therefore, a robot organism consists of two levels of
compartmentalization. There is the logical level insidehea
single module and the physical level of connected modules.

To demonstrate the diffusion of hormones between robot
modules, we performed AE with already joined robot organ-
isms that were allowed to actuate only their ‘hinges’, which
are the main actuators that bend the robot modules with an
angle of£90° from the default configuration. No wheels or
screw-drives were allowed to be activated. In the following
we shortly describe an exemplary incremental course of AE
in our framework:
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A. Step 1: The first oscillator

Fig. 5. The development of the body formation in an EMMR. Thecpss In a first perIOd’ we COUpIed two modules. For this

of the progress from single module formation in a swarm to raiganism organism, the only chance to move was to evolve a set
with legs is depicted in four steps. One possible way of adhgethis  of rules in the AHHS of both modules that actuates both

‘é"(')trhm‘(’)‘:]re/;';’n"'ssté; %e’::(gf‘f’u‘r";:rfe‘i;el;?%tt'ﬁ) r?rsgg gxgormo”e valtieso  hinges in an ‘oscillatory way’. We used the distance the
organism moved within 300 time steps as fitness function.
The fittest controllers were selected and were subject to
detected seed. Starting from the module which started tiR®int mutation and cross-over producing 20 offspring. The
joining progress, for exampie, a Simple line is formed. three best individuals were moved to the next generation
In such a joined Organism (Fig 5: Step two)' furthei\Nithout any Change (e||t|Sm) and two new AHHS controllers
environmental stimulation triggers the production of othewere generated randomly from scratch in each generation.
hormones inside the organism, which consists of connectéd Pehavior that significantly moved the organism evolved
modules. This process results in the emergence of a gradi&yithin the first 10 generations in a population of 25 AHHS
of hormone concentrations within the organism. The stilfontrollers. It increased its performance within the neit 2
existing sensor input which initially triggered the bodygenerations significantly. Fig. 6 shows snapshots of this
formation can now serve as a trigger for a differentiaticio in Organism’s behavior.
a head module and a tail module. Furthermore, a threshold gf
a ‘head-’ and a ‘tail-hormone’ determines, for example, the”
positions of legs in the middle of the organism (Fig. 5: step We implanted this oscillating AHHS into robot organisms
three). Despite this threshold is predefined, the body shapkincreasing size, by just adding robot modules at one end
of the robot organism is not determined but influenced b@f the organism. All of these organisms were able to move
environmental inputs. In this way, different body shapes arSlowly. The speed was significantly reduced compared to the
established by a self-organized reconfiguration process. TPrior used, smaller organisms. After 10-15 generations, th
building of legs is based on the same principles as the psocd®otion speed recovered to almost the prior level again, sug-
of building the main body. gesting that AE successfully adapted the pre-evolved AHHS
We prefer this approach of exploiting self-organizatiorfontroller to the new body size. Finally, we ended up with a
processes as the main design paradigm in favor of noip.ng Iine Of seven Connected rObOtS, Wh|Ch nicely mOVEd
adaptive approaches (e_g_, predefined Shapes) becauseq@f@ss the simulated arena in a Caterpillar-like movement
latter would lack any flexibility. The approach of self-Pattern. Fig. 7 shows snapshots of this organisms behavior.
organization described here in connection with evolutigna C. Step 3: Motion of more complex organisms
methods automatically influences the shape of the robot or- '
ganism when a new or changed seed is detected by a (joinedhfter these successful evolution experiments, we con-
or free) module. The possibility of self-reconfigurationeg ~ Structed more complex (nested) organism shapes, into which

Step 2: Motion of bigger organisms

the organism the needed plasticity and adaptability. we implanted the pre-evolved AHHS controller described in
subsection VIII-A. All of these shapes evolved well-adalpte
VIII. FEEDBACK 6: BODY MOTION AHHS controllers that were able to move the organism

In our AHHS control paradigm, there is, in principal, noin the arena. We want to discuss here just one example
difference between motion of individual robot modules andhat underlines how the body shape influences the body
of joined robotic organisms. The parallel behavior of singl movement: Fig. 8a and Fig. 8b show two different motion
modules sums up to the organisms behavior. Of course, thesteategies that evolved for the same body shape successivel
is a demand of coordination among the modules to achierst, the outer two branches of the T-shaped organism move
a regular motion of the organism. To allow this, hormonethe organism by oscillatory contraction and release ofrthei
diffuse to neighboring robot modules, as soon as modulésnge while the ‘tail’ in the back pushed the organism furthe
dock to each other. Hence, the internal body of the organisas well. The whole body was laying almost flat on the floor



Fig. 6. Evolved motion of two joined robot modules in the prege¢Symbricator Simulator’. The hinges of the two modules aomteacted in an
oscillations by the evolved AHHS. This pushes the organisrwérd.

Fig. 7. Evolved motion of several joined robot modules in thejguts’ ‘Symbricator Simulator’. The hinges of joined moduéee contracted in delayed
oscillations by the evolved AHHS. A caterpillar-like motipattern was finally evolved.

(Fig. 8a). Then, a different movement pattern emerged in
evolution: The central module contracted its hinge which
erected the whole organism. This way the three branches
of the T-shaped body could act like legs and the ‘tripod’
successfully moved through the arena (Fig. 8b).

IX. DISCUSSION

In the paper at hand, we describe several feedback loops
that affect body formation and body movement in an EMMR
system. Based on the involved feedbacks, we characterize
six levels of adaptation that are exploited by ourselves
to generate a bio-inspired adaptive reconfigurable robotic
system:

« Classic control: The controller—behavior feedback loop

is always present in any reactive agent, thus also in any (2)

autonomous robot that is able to perform behavior of Exporimont. 17,
any kind in its environment. We did not elaborate on [ses see s o fime s 1
this ‘classic’ feedback loop in the concept presented in

this article.

« Learning: This feedback adapts the controller during
runtime, based on the recent dynamics of the so called
‘reward’, ‘fitness’ or ‘cost’ function. We did not elab-
orate on this feedback loop in the concept presented in
this article.

« Evolution: In this feedback loop, the main concern is
the feasibility due to high computational costs. Self-
organizing processes generated by the general controller
design, such as homeostatic tendencies in the hormone
controller, need to be leveraged as well to obtain smooth
fitness landscapes and to decrease the number of gen Experiment: 17b, Generation:83, Individuum:6}

erations that are necessary before the desired behavior
is evolved Fig. 8. Two different motion patterns evolved successiveithithe same

. . . . body shape. a: flat body, oscillators move peripheral hingesfins. b:
« Controller morphogenesis: We showed in this article grected posture of the organisms, peripheral robots movedeis.

that the internal structure of the AHHS controller arises
from a dynamic self-organized process, that is driven by
the AHHS itself. Hence, it is subject to AE, together



with the other rule set that acts in the AHHS. Thismulti-level adaptation is essential to create a functignin
compartmental layout is an essential feature to allolEMMR approach, as it is desired in the projects SYMBRION
‘embodiment’ in our approach. and REPLICATOR.

« Robot morphogenesis:For the feedback loop of the
controller and the body shape we propose a dynam-
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organism the values of the hormones are altered and
therefore the behavior of the controller itself changes.
We think that this approach to a self-organized body[y)
formation process in combination with evolutionary
learning of the controller would be able to perform the 2]
demanding task of flexible body shape.

o Decentralized body motion: Body-motion of joined
organisms was successfully achieved by AHHS controf®
and by our implementation of AE. Again here, it is
a self-organized process — consisting of positive and4l
negative localized feedbacks and time delays — that
achieves the desired motion patterns. 5]

In our current research projects, we plan to implement
all six feedback loops, that are described above, in real
robotic hardware and in a sophisticated simulation softyar
that closely depicts the physical abilities and constsint
as well as the computational abilities of our final targeted,,
robots [22]. Using this software, we already successfully
implemented our AHHS controllers, evolved them to perform
adaptive behavior on singular robots and in joined robatic o
ganisms. Morphogenesis of the controller and morphogsnesi
of the robot organism will be our next main focus, as well
as enhancing the efficiency, the computational power and the!
evolvability of our AHHS controllers. Also the necessity of
all six feedback loops should be investigated. At the momerifo]
each feedback loop is investigated separately. For example
the body motion was investigated with fixed predefined bodjy 1
shapes. In case of learning and evolution, we note that
it is not necessary to have both of them in the system.
In principle, they just differ in their time scales. Leargin [12]
is achieved during a life time while evolution lasts over
generations. For example, there might be scenarios in which
learning does not improve the performance significantly s
because no optimization during runtime is needed.

However, all feedback loops interact with each other in fl 4]
complex way which is the key point of this approach. Fo
example, the change of the body shape through robot mor-
phogenesis influences the controller and the body motion.
These intertwined feedback loops encourage and challengsg,
evolution to generate adaptive behavior. [16]

We conclude that our AHHS approach allows self{17]
organization on multiple levels of the organism’s formatio
and movement process. Our evolutionary framework alters
the whole genome, which encodes for almost all parametdfs]
affecting the feedback networks that are mentioned above.
This genome-based evolution allows us to evolve controller
layouts, controller performance rules, virtual physicgd an
virtual chemistry of hormones, organism formation and orl-lg]
ganism movement all-together in parallel. We think, this
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