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Abstract

By compiling macroscopic models we analyze the adaptive behavior in a swarm
of autonomous robots generated by a bio-inspired, distributed control algorithm.
We developed two macroscopic models by taking two different perspectives: A
Stock & Flow model, which is simple to implement and fast to simulate, and a
spatially resolved model based on diffusion processes. These two models were com-
pared concerning their prediction quality and their analytical power: One model
allowed easy identification of the major feedback loops governing the swarm be-
havior. The other model allowed analysis of the expected shapes and positions of
observable robot clusters. We found a high correlation in the challenges posed by
both modeling techniques and we highlighted the inherent problems of inferring
emergent macroscopic rules from a microscopic description of swarm behavior.
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1 Introduction

Swarm robotics [5, 27], which is the robotic application of swarm intelligence
[1, 13, 3], is an emerging field of science characterized by a high degree of in-
terdisciplinarity. An ever-increasing variety of projects tries to solve the major
key problems of autonomously interacting moving machines (robots), which
are: complexity, noise tolerance, adaptability and predictability of collective
behavior. Most of these projects are performed by interdisciplinary teams to
tackle these problems from several scientific directions simultaneously and
cooperatively [18, 26]. These teams often include engineering scientists, math-
ematicians, physicists and biologists. The approaches pursued to develop the
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robot controllers are also manifold. Evolutionary Algorithms [30], potential
field methods [15], and hand-coded bio-inspired algorithms [20] are applied.
The idea of investigating bio-inspired control algorithms is based on the fact
that interacting groups of organisms (swarms, herds, flocks) are frequently
found in nature [21]. These forms of collective behavior emerged by natural
selection [6] during millions of years of biological evolution and can, therefore,
be assumed to be well shaped and well adapted to the ecological constraints of
the animals that show these behaviors. By translating these behavioral prin-
ciples to robotic control programs, stable and efficient robotic swarms can be
formed. Whereas these control programs act in environments that are com-
parable to the environment of the focal real-world organisms. Additionally,
the robotic swarm can also serve as a sort of a hardware simulation of the
biological source of inspiration. In this way, it can be used as a valuable tool
to investigate and to understand biological swarm systems. For both of these
approaches, the identification and the understanding of key factors shaping
the swarm behavior and other global swarm properties are crucial for achiev-
ing valuable scientific results. As these systems are multi-component systems
consisting of many cooperating agents, the basic key factors reside within the
agent-to-agent interactions. It is the composition of distributed feedback loops
(negative and positive) being responsible for the resulting collective swarm be-
haviors.

Often bottom-up simulation (individual-based or embodied simulation) is used
to simulate swarm behavior on a computer. These microscopic models have
frequently turned out to be an imperfect tool for identifying and analyzing
these feedbacks: Such simulations are often too much focused on mimick-
ing the overall collective behaviors instead of incorporating all relevant prox-
imate mechanisms. Unfortunately, the predicted collective swarm behavior
might result from simulation artifacts, hidden behind the high complexity of
these individual based simulations. Additionally, bottom-up simulations suffer
from computational complexity, not allowing decent and exhaustive parameter
sweeps within reasonable time.

In contrast, macroscopic models involving a higher level of abstraction, are
easier to understand, easier to analyze (parameter sweeps, sensitivity analysis)
and can possibly reveal a few intrinsic parameters of the system strongly
affecting or even governing the swarm behavior.

In general, the purpose of macroscopic models in swarm robotics is to support
the algorithm design phase as the design of individual-/micro-level algorithms,
that result in the desired swarm-/macro-behavior, has proven to be challeng-
ing [11, 17]. One option to overcome this problem is the modeling approach. In
swarm robotics there is only a small variety in mature state-of-the-art models
that are ready to support the algorithm design phase. The presumably mostly
used approach is based on rate equations (e.g., see [17, 4]). A drawback of
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these rate equation approaches is the limited representation of space – either
homogeneous space is assumed or a rough discretization by states is done (nev-
ertheless, in [9] a conceptual approach is reported showing a generalization of
the rate equation approach to continuous space). In addition to the rate equa-
tion approaches, several other preliminary and rather specialized models were
proposed: In [31] a formal method using temporal logic to specify emergent
swarm behavior is presented. In [28] a model for a special aggregation behavior
is analytically derived by applying combinatorics and linear algebra. In [2] a
model for a special case of a collective motion algorithm [19] is presented. For
a more detailed review of swarm models with focus on swarm robotics see [11].

Both models, that are presented in this paper, are macroscopic and have po-
tential to be generalizable. The idea of this modeling approach is to predict the
macroscopic behavior based on the control algorithm, which is a microscopic
description. The most relevant quantity, that is predicted by the models, is
number of robots (or robot density) at areas of interest.

2 The Robotic Swarm – Empiric Experiments

The focal scenario of our modeling approach was a series of empiric ex-
periments performed with a swarm of 15 mobile and autonomous Jasmine
robots [16]. These robots were controlled by a bio-inspired algorithm, that is
called ‘BEECLUST’ and that was derived from honeybees’ navigation behav-
ior in a temperature gradient. For details of this study, please see [22, 23, 14].
For transferring the honeybees’ behavior to a robotic swarm, the temperature
gradient was translated into a light gradient emitted by lamps mounted above
the arena. In these experiments the collective decision making ability of the
swarm was investigated by testing, whether or not the robots were able to pref-
erentially aggregate below the brightest available light spot. In the following
we define the investigated control algorithm BEECLUST (see also figure 1):

(1) All robots move (ideally) in straight lines.
(2) If a robot detects an object in front by analyzing reflections of emitted

infrared (IR) pulses it stops and listens for IR signals without emitting
pulses.

(3) If there are no relevant IR signals, the robot assumes the object to be an
obstacle (e.g. the arena wall), turns randomly and continues with step 1.

(4) If the robot detects foreign IR signals, it assumes the object in front to
be another robot. The stopped robot then measures the local luminance.
The higher the luminance, the longer it waits at that place.

(5) After the waiting time has elapsed, the robot turns and continues with
step 1.
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Fig. 1. Finite state machine describing the BEECLUST algorithm.
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Fig. 2. The waiting time a robot waits after an encounter of another robot is non–
linearly correlated with the measured local luminance. Robots measure this local
luminance only after encounters with other robots. This curve is defined by equa-
tion 1, which is implemented in the robots’ control algorithm (for more details
see [23]).

The key components in this swarm robotic system are the number of robot-
robot encounters and the dependency of the waiting time of a clustered robot
on the locally measured luminance. A robot does only measure the light in-
tensity, if it encounters another robot. Thus, a robot-robot encounter is the
precondition to stop. The sigmoid correlation between the light intensity and
the waiting time is depicted in figure 2.

Equation 1 shows, how the waiting time was implemented in the robotic con-
trol algorithm: w refers to the waiting time of a robot (in seconds), S refers
to the luminance sensor values at the position of the robot. The sensor values
scale linearly from 0 to 180 corresponding to 0 lux and approx. 1500 lux.

4



w =
66S2

S2 + 7000
(1)

The study of [23] showed that this algorithm, which is very easy to implement
on swarm robots, demonstrated impressive abilities of swarm intelligence in
real hardware experiments. In an environment with one local and one global
light maximum (emitted by two lamps) the robots preferentially aggregated
at the spot with the higher luminance. At several points in time, the light
intensities were changed (in four phases of 180 seconds each, see sun-like sym-
bols in figure 5) and the robotic swarm quickly adapted its prior decision and
reallocated robots between the two clusters to reach an adaptive and robust
solution.

We adopted this experimental setup and constructed two abstract models
of the swarm robotic systems. These models will allow to investigate (in fu-
ture studies) several key components of that system without performing time-
consuming experiments with real robot hardware. However, the plausibility of
these macroscopic models has to be tested by comparing the model predictions
to real empiric experiments, which is the main goal of the paper at hand. The
models that we elaborate and analyze in this paper are easily extensible and
adaptable. Thus the models will be useful not only for the special case of a
specific swarm robotic experiment which we use as reference in our analysis
here.

3 The Stock & Flow Model

To investigate the basic properties of the focal swarm robotic system, we con-
structed a very abstract macroscopic model of a swarm of 15 robots. The
model depicts the control algorithm described above and was parameterized
in a way to reflect the empiric experiments performed with the real robot
hardware. We carefully incorporated all hardware parameters of the Jasmine
robot (sensory radius, velocity, etc.) as well as all environmental parameters
(arena dimensions, luminance on both sides of the arena, etc.). The model
was constructed as a Stock & Flow model, depicting differential equations in
a graphical way, following the concepts of system dynamics [8]. We used the
modeling software VensimTM [29] to construct and to evaluate the model. In
VensimTM, stocks are the main components of a model, representing compart-
ments that can hold quantities at a given time. In our model, these quantities
are the number of robots which are always in one of the following three distinct
states: aggregated on the left, or on the right side of the arena, or moving.
The state transitions, that are shifts of quantities from one stock to another,
are expressed by flows in such a model.

5



Fig. 3. Stock & Flow diagram of our model (simplified form). Stocks (compartments,
boxes) describe the number of robots in one of the three main states (aggregated
on the left/right side of the arena, or moving). Flows (rates, doubled arrows) model
the changes from one compartment to the other (resulting from behavioral changes
of individual robots). Thin arrows and variables without boxes describe auxiliary
variables used to calculate the flows. Circular arrows highlight the major positive
and negative feedback loops (indicated by the sign) that govern the behavior of the
system. These feedback loops can be identified by following the thin arrows and
flows in the Stock & Flow diagram.

Figure 3 depicts the basic components of our model. The change in the number
of aggregated robots on the left side of the arena can be described by

dAleft

dt
= Jleft(t) − Lleft(t). (2)

The change in the number of robots on the right side of the arena is modeled
in a similar way except for subscripts ’right’ instead of ’left’ (cf. Figure 3).
The quantity (of robots) within this stock is changed by an inflow and an
outflow 1 .

Jleft(t) is the number of robots joining the left cluster at time t, Lleft(t) is the
number of robots leaving the left cluster at time t,

Lleft(t) =
Aleft(t)

wleft(t)
. (3)

1 Please note that our model contains also a variable Aright(t), which represents the
right stock in Figure 3. For the sake of simplicity, we describe only those equations
that model the aggregation below the left lamp. The model is formulated symmet-
rically, so all variables having the index left have to replaced by the index right to
model the other side of the arena.
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The number of robots leaving a cluster depends primarily on the number of
aggregated robots in the cluster (Aleft(t)) and on the rate of change of this stock
( 1

wleft(t)
). wleft(t) is the current resting time of a robot in the left aggregation

site, which depends on the local luminance measured by the robot when it
joined the cluster. By taking up equation 1, we modeled the waiting time
wleft(t) for a robot joining the left cluster at time t as follows:

wleft(t) = 66
Sleft(t)

2

Sleft(t)2 + 7000
(4)

The reported sensor value Sleft(t) depends on the local luminance (Elocal,left(t))
sensed by the robots at the point in time they joined the cluster. From our
empiric experiments, we fitted the function Sleft(t) to model the sensor output
in response to the encountered local luminance:

Sleft(t) = min

(

180, 256
Elocal,left(t)

lmax

)

, (5)

where lmax = 1500 lux represents the maximum luminance that can be encoded
by the used luminance sensor.

To calculate the luminance below the lamp, several modeling steps had to be
made. The luminance Emax,left(t) at the spot directly below a lamp depends
on the light intensity (cleft(t) = 9 candela for the dimmed light; cleft(t) = 45
candela for the bright light) emitted by the lamp’s pulp, on the height of the
lamp hleft = 0.3m as well as on the shape of the lamps reflecting collector,
which focuses the upwards reflected light beams in a sort of ’focus’ (fleft =
0.12m) below the lamp.

Eleft(t) =
cleft(t)

h2
left

+
cleft(t)

(hleft − fleft)2
(6)

Our model assumes that the clusters fill the spot below the lamps beginning
at the center of the light spot (the brightest spot below the lamp). The more
robots are already aggregated below a lamp, the lower is the luminance mea-
sured by additional robots that join the cluster, as they join the cluster in
a bigger distance from the brighter central spot. Luminance decreases with
quadratic decay with the distance from the light emitter. An implementation
of this decay of luminance allowed us to model the saturation effect of light
spots observable in empiric experiments.

As the clusters fill up with robots, the closest approachable distance dleft(t)
to the point below the lamp increases: The area covered with robots below
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a lamp can be approximated by κleft(t) ≈ Aleftr
2
sensorπ. The constant rsensor =

0.075m represents the range of the collision detection sensors. Assuming a
radial arrangement of robots starting at the spot directly below the lamp, the
minimum approach distance dleft(t) for a robot is approximated by dleft(t) ≈
√

2κleft(t)
π

. Based on this, the maximum luminance at an already occupied site,
which can be encountered by a joining robot, was modeled as

Elocal,left(t) =
cleft(t)

h2
left + dleft(t)2

+
cleft(t)

(hleft − fleft)2 + dleft(t)2
. (7)

One main problem in modeling the focal control algorithm on this highly ab-
stract level was that the robots measure the luminance when they join the
cluster and that they leave the cluster after a significant time delay that de-
pends on the luminance they measured before. This means that the rate of
leaving robots is a delayed effect of the luminance encountered in a variable
period before. This problem is especially tricky in situations where the lu-
minance changes spontaneously at a given time, as it was the case in the
empiric experiments considered here. The best solution we found was to use
a smooth function available in VensimTM, which calculates a gliding aver-
age throughout a time window of 66 seconds, which was the longest possi-
ble waiting time (see figure 2). This is expressed in our model by ŵleft(t) =
smooth(wleft(x), (t − 66) < x < t). This ŵleft(t) was used instead of wleft(t)
in equation 3 for those simulations that used the smooth function. We choose
to use this smooth function instead of implementing this part of the system
in higher detail because of the following reason: Modeling the ‘memory’ of
each robot that is used for the time delay at the target would significantly
increase the complexity of the model. As the Stock & Flow model’s advantage
is its simplicity, we think that the smooth-function is the best solution to find.
Alternatively, one could implement a list that manages the waiting times of
robots that arrive at the target spot in every time step. Such a model might
be more precise and better grounded, but it will be a step from macroscopic
modeling towards microscopic modeling, and would be unfavorable for our
goals.

To complete equation 2, we also had to track the number of robots that join a
cluster at time t in our model. We assumed, that free robots distribute equally
in the arena, thus the fraction γ = 0.5 will be found on average on either one
of the two sides of the arena.

Jleft(t) = γFleft(t)ϕleft(t)Pdetect (8)

The number of robots that join a cluster depends on the number of free robots
(F (t)), on the probability of robot-to-robot collisions (ϕleft(t)) and on the
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abilities of the robots to identify a robot-to-robot collision correctly (Pdetect =
0.5).

The probability of robot-to-robot collisions is calculated by geometric con-
siderations, mainly by calculating the proportions of the area covered by the
sensors of a robot to the total available arena space:

The space covered by an aggregated robot is described by κaggr = r2
sensorπ.

The space covered by a moving robot within a second is described by κmov =
r2
sensorπ + 2rsensorv. The constant v = 0.3m/sec represents the robots’ speed.

κarena = 1.5m2 represents the area of the arena.

Based on these calculations we modeled the likelihood of a focal robot to meet
another robot (aggregated or free) on the corresponding side of the arena
within one second (unit time step of the model).

ϕleft(t) =
γF (t)κmov + Aleft(t)κaggr

0.5κarena

(9)

Finally, the changes in the number of free robots (F (t)) are described by the
rates of robots joining clusters and by the rates of robots leaving clusters

dF

dt
= Lleft(t) + Lright(t) − Jleft(t) − Jright(t). (10)

4 Spatial Model of Self-Propelled Particles

In this approach we followed the concept of Brownian agents as a model for
swarm robots, that is, robots are seen as self-propelled particles showing ran-
dom motion [24, 11, 12]. This approach is based on the idea that a microscopic
description of the motion of a single robot can be set up: a stochastic differ-
ential equation – a Langevin equation. Based on the Langevin equation a
macroscopic description of the particle density of the whole swarm is mathe-
matically derived: a partial differential equation – the Fokker-Planck equation.
For a very detailed description of this concept see [11].

Here, we omitted a strict derivation of a macroscopic model out of a micro-
scopic model for simplicity and chose a phenomenological approach. Led by
empirical arguments, we constructed two partial differential equations model-
ing the expected robot density for a given state depending on time and space.
These equations are similar to those developed in the Stock & Flow model
described in the previous section.
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4.1 Spatially Modeling of Moving and of Waiting Robots

In our model, we distinguished two states: free (moving) robots F and aggre-
gated robots A. Hence, we got two PDE; one for each state. Then we consid-
ered the density of free robots F (x, t) at position x in 2-d space and at time t.
During an experiment, the density F (x, t) is, on the one hand, reduced by
the number of robots which switch to the aggregated state. These transitions
depend on a stopping rate ϕ(x, t) which is space- and time-dependent (as it
depends on robot densities) and describes the ratio of stopping robots. On the
other hand, F (x, t) is increased by beforehand stopped robots that switch to
the moving state. These robots are that fraction of the stopped robots at x

whose space-dependent waiting time w(x) has elapsed at time t (provisionally
we ignore dynamic waiting times). This fraction is equal to the fraction of
robots which has stopped at time t − w(x).

In addition to the above modeling of the state transitions, we needed to model
the robots’ motion. Following our previous works [11, 12] we chose a diffusion
term as an abstract model of robot motion for several reasons:

(1) The robots’ collision avoidance behavior shows features that are well mod-
eled by diffusion processes: From time to time, the robots’ movements are
interrupted by encountering each other. This event can metaphorically be
interpreted as colliding particles because both robots will change their di-
rection after an encounter. However, an actual collision is avoided because
the robots are programmed to turn away from each other before getting
too close to each other. This turning angle can be considered being ran-
dom due to the complex underlying processes in the sensors and due to
the robots’ imprecision. Furthermore, robots tend to move away from
areas, which are crowded with free robots, into un-populated regions.

(2) Diffusion is mathematically easy to handle.
(3) Alternative macroscopic models of robot motion with similar or better

performance seem not to be available.

Thus, we got the following partial differential equation that describes the
change of the robot density of free robots over time

∂F (x, t)

∂t
=D∇

2F (x, t) − F (x, t)ϕ(x, t)Pdetect (11)

+ F (x, t − w(x))ϕ(x, t − w(x))Pdetect,

for a diffusion constant D = 500 and probability Pdetect = 0.5 of successfully
detecting another robot. The first summand of the right hand side is the
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diffusion term, which is our model of robot motion. The second and third
summands describe state transition rates. The second summand describes the
stopping robots (defined by the stopping rate ϕ(x, t)) and, thus, reduces the
density of free robots in x (negative influence). The third summand describes
the robots that switch back to the moving state after their waiting time has
elapsed (positive influence). The fraction of robots that start moving at time t
is given by the fraction of stopping robots at time t−w(x) (for the provisional
simplification of a time-invariant waiting time w(x)).

We motivated the stopping rate ϕ(x, t) by empirical arguments. It is assumed
to be proportional to the number of free robots populating the area covered
by the sensors of free robots (F (x, t)κmov) and on the number of aggregated
robots populating the area covered by the sensors of an aggregated robot
(A(r, t)κaggr). These terms were approximated using densities which are nor-
malized to a maximum density. We set the maximum density to 1/(πr2

sensor) for
the sensor range rsensor = 0.075m. These normalized densities were obtained
by Fnorm(x, t) = F (x, t)/(πr2

sensor). As an approximation we got

ϕ(x, t) =
(

Fnorm(x, t)
(

1 +
2v

πrsensor

)

+ Anorm(x, t)
)

, (12)

with nominal velocity v = 0.3m/s.

The equation for aggregated robots A(x, t) is directly obtained by omitting the
diffusion term and inverting the sign of equation 11. It is in full correspondence
to the Stock & Flow model:

∂A(x, t)

∂t
= F (x, t)ϕ(x, t)Pdetect − F (x, t − w(x))ϕ(x, t − w(x))Pdetect. (13)

Note that equation 13 is mathematically not necessary (fully described by
summations over time of F ) but was introduced for demonstrative purposes.

In the scenario under investigation here, the waiting time w(x, t) was dynamic.
Thus, the waiting times of robots having stopped at several different times in
the past might elapse simultaneously. We had to sum robot fractions over all
these times to model the state transition from aggregated to free correctly.
The last summand of equation 11 (similarly for equation 13) became

∑

w′ with w(t′)+t′=t

F (x, t − w′)ϕ(x, t − w′)Pdetect. (14)
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(a) Phase 1, 0 sec - 180 sec.
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(b) Phase 2, 180 sec - 360 sec.
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(c) Phase 3, 360 sec - 540 sec.
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(d) Phase 4, 540 sec - 720 sec.

Fig. 4. Sensory map showing the sensor values as defined by equation 5 and 7 for
the four phases of the experiment.

This is the sum of all robot fractions that stopped at any time t′ < t and for
which is true: w(t′) + t′ = t (i.e., the waiting time elapses at time t).

4.2 Initial Conditions and Boundary Conditions

Initially the robots were uniformly distributed (spatially homogeneous den-
sity). All of them were free robots; there were no stopped robots at the begin-
ning. The borders were isolated, i.e. no robots leave and no robots enter the
arena. We got an initial value problem which was solved numerically.

Most of the occurring parameters could be determined well, such as the spatial
luminance distribution and the mapping of this luminance to sensor values.
The diffusion constant D is a free parameter as it cannot be measured directly.
In fact, it was used to adjust the homogenization speed of the moving robots
density F (x, t). D adjusts the homogenization of the free robot density F (x, t)
and indirectly only the quantity of aggregated robots; the qualitative features
of the model are determined by the other parameters.
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Fig. 5. Comparison for the empiric results achieved with real robotic hardware to
the Stock & Flow model described in this article. The sun-like symbols indicate
the light intensity emitted by the corresponding lamp: A black sun indicates that
the lamp was turned off in this phase, a gray sun indicates that the lamp was set
to low intensity and a white sun indicates that the lamp was set to high intensity.
We compare the Stock & Flow model in two variants: with smoothing (ŵ(t)) and
without smoothing (w(t)). N=6 repetitions per empiric experiment.

5 Results and Discussion

In figure 4 we present the sensory input spatially resolved as perceived by a
robot according to our model (see equation 5 and 7). Note the plateaus at
values of 180 which are caused by the min-function in equation 5.

In figure 5 the number of aggregated robots below the two lamps is given over
time in all four consecutive phases of different environmental conditions (lamp
configurations). The prediction of the Stock & Flow model closely follows the
median aggregation levels observed with real robotic hardware, especially in
the second and in the third experimental phase. Two major deviations of
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the model are prominent and have to be investigated: At the initial phase,
when only one dimmed light was present, the Stock & Flow model predicted
an overshoot for the first two minutes. After that, the predicted number of
aggregated robots nicely converged to the empirically observed level. And in
the last phase, after the right light was turned off completely, the cluster at this
side of the arena was predicted to shrink much slower than it was observed
in the experiments. We simulated the model again without smoothing the
encountered local luminance, i.e. we used w(t) instead of ŵ(t). After this
change, the predictions in the first and in the last phase were much closer to
the empiric results, but were less optimal in the second and in the third phase.
Thus, we conclude that the two observed artifacts (overshoot and slow decay)
were resulting from the (necessary) usage of the smooth function, which was
used to introduce the microscopic waiting time ’memory’ of a robot into our
top-down model.

Also the spatial model predicted the observed levels of aggregation with good
agreement to the observed empiric results (see figure 6). D was used to fit the
model for quantitative consistency to the experiments. However, the predic-
tions for the decay of aggregated robots at the dimmed light in the contention
phase of the experiment (right light in phases two and three) were inaccu-
rate. From the investigation of this problem we came to an interesting insight
that robots leaving the dimmed light region get very fast to the bright light
region. Therefore, it is crucial for a high degree of adaptivity in the swarm
behavior that the robots turn away from the cluster after the waiting time
has elapsed. Furthermore, it is also important that the experiments were per-
formed with a low robot density. However, by using a diffusion term for the
robot motion the robot flow between the two lights is systematically too small
in our model compared to the empiric data. Due to the low robot densities
and the rather deterministic control algorithm, diffusion does not fully catch
the actual quality of the observed behavior. This could only be resolved by
dropping the diffusion approach and turning to (probably much) more complex
approaches. But there seems to be a lack of applicable alternative macroscopic
theories with an explicit spatial representation.

In both models the stopping rate ϕ(t) (probability of robot-robot encounters)
and the probability of successful robot-robot detection Pdetect proved to be
crucial indicating the importance of these key parameters. By discretizing the
spatial model for using a numerical solver it can be considered an extremely
finer grained variant of the Stock & Flow model which can, in return, be seen
as a most coarsely variant of the spatial model.

One aspect of the swarm system that cannot be described with the Stock &
Flow model is the position, the spatial expansion and the shape of the emerg-
ing clusters. At least partially, this information can be predicted by the spatial
model. In figure 7 we compare the prediction of the spatial model for the robot
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Fig. 6. Comparison for the empiric results achieved with real robotic hardware to
the spatial model described in this article. The sun-like symbols indicate the light
intensity emitted by the corresponding lamp: A black sun indicates that the lamp
was turned off in this phase, a gray sun indicates that the lamp was set to low
intensity and a white sun indicates that the lamp was set to high intensity. N=6
repetitions per empiric experiment.

density to a photo of the experiment in phase two. This can not serve as a val-
idation but sampling statistically significant robot densities from experiments
would generate an immense overhead that has not been invested yet.

6 Conclusion

Our analysis showed that the focal swarm robotic system can be well described
by different macroscopic model approaches. Both offered high prediction qual-
ity without extensive fitting procedures. The Stock & Flow model was not
systematically fitted to the empiric data, it was just parameterized with ob-
vious and measurable parameters like robot speed, sensory radius and arena
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(a) Photo of the arena showing a typical
configuration.

(b) Expected density of aggregated
robots (higher densities are brighter).

Fig. 7. Comparing a swarm configuration observed during the experiments in phase
two to the prediction of the spatial model. On the left side there is the brighter light
compared to the dimmed light on the right.

dimensions. The advantage of the suggested macroscopic models is that they
allow exhaustive parameter sweeps with low computational efforts. Both mod-
els evaluate a scenario within some seconds, thus many thousand simulation
runs are not a problem of time.

Both models perform quite well in predicting the dynamics of robot aggre-
gation at the target sites. The macroscopic model follows the empiric results
more closely than the Stock & Flow model. When looking into details, a some-
how different picture arises: In [23] we show a competition-effect that can be
observed in the system: target spots compete for robots. This can be seen
by the fact that the number of robots aggregated at dimmed spots depends
on the luminance conditions on the other spot. In reaction to changes on the
other target, the number of robots changed even at targets with unchanged
quality. This effect was correctly predicted by the Stock & Flow model and
was missing in the macroscopic model.

Both models can be easily adapted to other experiments performed with the
BEECLUST algorithm. Changes in the size of the environment and in the
number of used robotic modules can be made. Although the presented experi-
ment is a classical ‘choice’ experiment, which is frequently used to investigate
swarm-intelligent systems [25, 7, 3, 10], other environmental conditions are
possible as well: For example, there could be more sub-optimal target spots
present in the environment. Such changes are easier to implement using the
spatially resolved macroscopic model. The main advantage of the Stock & Flow
model is it’s simplicity and an addition of target spots will quickly increase
the complexity of the model. Thus, it would loose it’s main advantage.

The focal swarm algorithm is rather simple, but, as was discussed in [23],
the resulting collective behavior of the swarm is complex. Both macroscopic
models discussed here allow to reduce this complexity by abstraction without
losing the ability to make interesting predictions of characteristic key aspects
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of the swarm behavior.
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