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Abstract

The semi-automatic or automatic synthesis of robot controller
software is both desirable and challenging. Synthesis of
rather simple behaviors such as collision avoidance by apply-
ing artificial evolution has been shown multiple times. How-
ever, the difficulty of this synthesis increases heavily with in-
creasing complexity of the task that should be performed by
the robot. We try to tackle this problem of complexity with
Artificial Homeostatic Hormone Systems (AHHS), which
provide both intrinsic, homeostatic processes and (transient)
intrinsic, variant behavior. By using AHHS the need for pre-
defined controller topologies or information about the field of
application is minimized. We investigate how the principal
design of the controller and the hormone network size affects
the overall performance of the artificial evolution (i.e., evolv-
ability). This is done by comparing two variants of AHHS
that show different effects when mutated. We evolve a con-
troller for a robot built from five autonomous, cooperating
modules. The desired behavior is a form of gait resulting in
fast locomotion by using the modules’ main hinges.

Introduction
The (semi-)automatic synthesis of robot controllers with ar-
tificial evolution belongs to the software section of evolu-
tionary robotics (Cliff et al., 1993). The main challenge in
this field is the curse of complexity because an increase
in the difficulty of the desired behavior results in a signif-
icantly super-linear increase in the complexity of its evolu-
tion. This is partially documented by the absence of com-
plex tasks in the literature (Nelson et al., 2009). Addition-
ally, in evolutionary robotics the cost of the fitness evalu-
ation is rather high even in case of simulations, if the ap-
plication of a physics engine (simulation of friction, inertia
etc.) cannot be avoided. Another challenge is the appropri-
ate choice of a genetic encoding (Matarić and Cliff, 1996)
and the basic principle of the controller design as they define
the designable fraction of the search space and the fitness
landscape (non-designable fractions are induced, for exam-
ple, by the environment or the task itself). While the search
space should be kept small, the fitness landscape should be
smooth with a minimum number of local optima. Expe-
rience shows that these two criteria are contradicting. We

summarize this complex of challenges by the aim to ‘strive
for high evolvability’.

Concerning the problem of finding appropriate controller
designs a pleasant trend can be observed in recent litera-
ture. The most prominent candidate is presumably the Hy-
perNEAT design (Stanley et al., 2009; Clune et al., 2009). It
is based on artificial neural networks (ANN) but combines
the ‘search for appropriate network weights with complexifi-
cation of the network structure’ (Stanley and Miikkulainen,
2004) through the generation of connectivity patterns. It
has proven to have good evolvability combined with an ad-
equate range of applications. Other promising, recent ap-
proaches tend to be more inspired by biology, in particular
by unicellular organisms and endocrine systems. Examples
showing good evolvability are the reaction-diffusion con-
troller by Dale and Husbands (2010) and homeostasis and
hormone systems based on GasNets (Vargas et al., 2009)
and ANNs (Neal and Timmis, 2003). They indicate home-
ostasis as a prominent feature in successful adaptation to dy-
namic environments.

In this paper, we analyze a controller design called Artificial
Homeostatic Hormone Systems (AHHS) that is based on
hormones only and was introduced before (Hamann et al.,
2010; Schmickl et al., 2010; Schmickl and Crailsheim,
2009; Stradner et al., 2010, 2009). AHHS is a reaction-
diffusion approach. Sensory stimuli are converted into
hormone secretions that, in turn, control the actuators.
In addition, hormones interact linearly and non-linearly
comparable to the hidden layer of ANN. The topology of
this hormone-reaction network is not predefined. Such
systems show homeostatic processes because they typically
converge to trivial equilibria for constant sensor input. The
sensory stimuli are basically integrated in form of hormone
concentrations (a form of memory) and decomposed over
time (oblivion). However, during a limited period of time
(transient) after a stimulus they show also variant behavior,
especially, if non-linear hormone-to-hormone interactions
are applied. This way, explorative behavior of the robot is
implemented that allows for the testing of many sensory-
motor configurations. The concept of AHHS is related to



gene regulatory networks. However, here each edge has its
own activation threshold and redundant edges with different
activations between two hormones are allowed.
The desired main application of AHHS is multi-modular
robotics (SYMBRION, 2010; REPLICATOR, 2010). In
this field, autonomous robotic modules are studied, that are
able to physically connect to each other, and can also es-
tablish a communication and energy connection. Hence,
they form a super-robot called ‘organism’, that is able to re-
configure its body shape, see for example, Shen et al. (2006)
or Murata et al. (2008). Therefore, the underlying idea of
diffusion in our reaction-diffusion system is that hormones
diffuse from robot module to robot module and establish a
low-level communication. Following our maxim of trying to
reach a maximum of plasticity we use identical controllers in
each module independent of their position within the robot
organism, so there is neither a controller nor a module spe-
cialization. This concept implements the focus of evolution-
ary robotics on modularity (among others) in terms of hard-
ware and software (Nolfi and Floreano, 2004). Although
we evolve cooperative behaviors by evolving a kind of self-
organized role selection, there is no co-evolution.
In general, our approach is more organic in contrast to the
typical symbolic approach (direct encoding of pitch, roll,
yaw angles, use of pattern generators using Gaussian func-
tions etc.). The biological inspiration is not practiced asan
end in itself but rather introduces more robustness in compu-
tations and it allows the diffusion of such values from mod-
ule to module (implementing implicit communication).
One focus of our current research track is to design fit-
ness landscapes by using appropriate controller designs. We
investigate possibilities of smoothing the fitness landscape
by a sophisticated interaction between the controller design
and the mutation operator. We test whether it is useful to
maximize the causality of the mutation operator (i.e., small
causes have small effects) by reducing the maximal impact
to the organism’s behavior. However, whether high causality
is really desirable, is questionable (e.g., cf. Chouard (2010)).
The investigated scenario is a modular-robotics variant of
gait learning in simulation. Initially, we connect five mod-
ules in a simple chain formation as the body formation itself
is not yet in our focus. The task is to move as far as possible
by utilizing the hinge in each module only (no wheels).

Artificial Homeostatic Hormone Systems
In AHHS, sensors trigger hormone secretions, which
increase hormone concentrations in the robot. These
hormones diffuse, integrate, decay, interact and fi-
nally, affect actuators. We have analyzed AHHS con-
trollers in single robots before (Schmickl et al., 2010;
Schmickl and Crailsheim, 2009; Stradner et al., 2010,
2009). In these cases, the robot’s body was virtually divided
into compartments that hold hormones and between which
hormones diffuse. These compartments create a spatial
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Figure 1: Sketch of the hormone dynamics and diffu-
sion processes in an organism. Each module holds differ-
ent hormones with different concentrations, hormones dif-
fuse through the organism based on a diffusion coefficient
evolved individually for each hormone, module locations
(e.g., elevation) are not relevant for diffusion; sensor settings
simplified, actually four proximity sensors per module.

context (embodiment) by associating sensors and actuators
with explicit compartments (e.g., left proximity sensor and
left wheel actuator are associated with the left compartment
and hence depend only on hormone concentrations of
this compartment). In the case of modular robotics, the
subdivision of the robot organism is naturally defined by
the modules themselves. A virtual compartmentalization is
not necessary and hormones diffuse from module to module
(see Fig. 1). A first small case study with organisms built
from three modules was reported in (Hamann et al., 2010).

AHHS1
We call the AHHS, initially presented in (Schmickl et al.,
2010; Schmickl and Crailsheim, 2009), AHHS1. An AHHS
consists of a set of hormones and a set of rules. On the one
hand, it defines production/decay rates and diffusion coeffi-
cients for each hormone. On the other hand, it defines by
rules the production through sensors and interaction of hor-
mones as well as their influence on actuators. There are four
types of rules. Sensor rules define the production of hor-
mone through sensor input. Actuator rules define the con-
trol of actuators through hormone concentrations. Hormone
rules define the interaction between hormones, that is, one
hormone triggers the production of another hormone (or it-
self). Additionally, there is an idle rule to allow a direct
deactivation of rules through mutations. Rules are triggered
at runtime, if a certain threshold is reached (sensor values
in case of sensor rules or hormone concentrations in case of
hormone rules). The amount of produced hormone or the
actuator control value are linearly depending on the control-
ling sensor or hormone respectively (‘λx + κ’). For more
details see Schmickl et al. (2010).

AHHS2
Based on AHHS1 we designed an improved variant called
AHHS2. The guiding principle of this improved controller
design was to gain higher evolvability by creating smoother
fitness landscapes. There were three main changes.



First, we introduced an additional rule type that implements
nonlinear hormone-to-hormone interactions in the general
form of ∆x/∆t = xy, wherex is the considered hormone
concentration andy is the hormone concentration of the in-
fluencing hormone that triggers the considered rule. The
idea is to increase the intrinsic dynamics (basically transient
behavior before equilibria are reached) of the hormone net-
work even without significant sensor input.
Second, a rule is not just triggered by exceeding or falling
below a threshold but is linearly weighted within a trigger
window (i.e., a tent function with a maximum of 1, defined
by a center and a width, see eq. 2 below).
Third, the mutation of rule types in the form of discrete
switches seemed to be too radical. This was overcome by
introducing a concept of weights for rule types. Now, each
rule can operate as any rule type at the same time. Each rule
has a weight for each of the five rule types summing up to
one (see Fig. 2). The influence of a rule type is proportional
to its weight, for example, the sensor-rule aspect of a rule
with a weight of 0.1 will produce only 10% of the hormone
it would produce, if its weight would be 1, seewL in eq. 1
below. A mutation will now only change two rule weights
by reducing one byw and addingw to the other weight. In
a well adapted controller we would expect that the weights
of a rule are mainly concentrated on one or at most two rule
types. Other weight distributions should be transitional only
because specialization allows for better optimization.
The mathematical closed-form of this concept using the ex-
ample of a linear hormone rule type is

L(t) = wLθ(Hk(t))(λHk + κ), (1)

whereL(t) is the hormone amount that is to be added to the
considered hormone at timet, wL is the weight of the linear
hormone rule (see Fig. 2),k is the index of the input hor-
mone andHk is its concentration,λ is the dependent dose,
κ the fixed dose.θ is called trigger function and defined by

θ(x) =

{

1

η
(η − |x − ζ|) if |x − ζ| < η

0 else
, (2)

for trigger window centerζ and trigger window widthη. For
a more detailed introduction of AHHS2 and for a compari-
son of the AHHS approach to the standard ANN approach,
see Hamann et al. (2010).
Note that the rule parameters (fixed dose, input hormone,
trigger window etc.) are correlated via the rule types. For
example, the input hormone is used for both the linear and
the nonlinear hormone rule. If we would allow indepen-
dent parameters for each rule type the genome (encoding
of the controller) size would be increased by a factor of
about three. This is a tradeoff in the complexity of the
genome and, for example, a difficulty when analyzing the
results. This is related to the completeness-vs-compactness
challenge (Mataríc and Cliff, 1996).
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Figure 2: Rule type weights of the AHHS2 approach com-
pared to AHHS1 (abbreviations: sensor rule, linear hormone
rule, nonlinear hormone rule, actuator rule).

Investigated scenarios

Our main focus is on the field of modular robotics and our
main concern is whether we are able to evolve fast loco-
motion in the gait learning task. Still, we tested the AHHS
approach also in an inverted pendulum task as well, due to
its lower computational complexity.

Inverted pendulum

In addition to the gait learning task, we tested the AHHS
approach in a task that is easier to handle: balancing the in-
verted pendulum (see Fig. 3). The computational demand of
the gait learning task is very high due to the sophisticated
simulation of physics. We satisfy the need for a simula-
tion of lower computational complexity by introducing the
inverted pendulum task. Higher statistical significance of
the results can be reached within reasonable time of com-
putation. The original inverted pendulum is only slightly
related to a real robotic task. Therefore, we adapted it to
our requirements. The sensors are noisy (equally distributed
and uncorrelated in time,±2.3%) and sampling rates of
sensors are low which is documented by the relation be-
tween the cycle lengthτ and the maximal angular velocity
of 0.05π[1/τ ] = 9◦[1/τ ]. The pendulum can move up to
9◦ between two calls of the controller. The controller has
little time to adapt to new configurations. Furthermore, the
sensors do not deliver actual angles and positions directly
but partitioned onto several sensors and also relative rather
than absolute (distance to wall instead of the crab’s posi-
tion etc.). The AHHS controls two outputs, left actuatorA0

and right actuatorA1, while the speed control of the crab is
determined by their difference. The pendulum is started in
the lower equilibrium position, so the nonlinear up-swinging
phase is included. Combined with the sensor noise it is im-
possible for the controller to balance the pendulum in the
upper equilibrium position. So the task stays dynamic and
the controller is exposed to new situations constantly. The
fitness function is the summation over all time steps of the
angular distance to the top position in radians.
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Figure 3: Inverted pendulum, pendulum free to move full
360◦ mounted on the crab that moves in one dimension
(left/right) bounded by walls.

Figure 4: Two connected prototypes of the projects
SYMBRION (2010) and REPLICATOR (2010).

Gait learning in multi-modular robotics

Gait learning in legged robotics is a commonly studied task
in evolutionary robotics as reported by Nelson et al. (2009).
However, here we investigate gait learning in multi-modular
robotics. Each module consists of one hinge and we con-
nect five modules. These five hinges are controlled decen-
trally although the modules have a low-level communication
channel by means of diffusing hormones.
In contrast to the standard tasks of gait learning and collision
avoidance, the challenge of gait learning in multi-modular
robotics is more complex. The resulting gait is emergent due
to the decentral and cooperative control of the actuators. In
addition, there are several conceptionally different solutions,
that is, different techniques of locomotion with good perfor-
mance (e.g., caterpillar-like, erected walk, small jumps).
In each module the same controller is executed. Therefore,
the gait learning task includes several sub-tasks. The organ-
ism has to break the symmetry (head and tail), synchronize
through collective cooperation, and start moving into a com-
mon direction. This synchronization aspect is similar to the
gait learning task for a legged robot with HyperNEAT by
Clune et al. (2009).
All of this work is based on simulations as the actual hard-
ware is not yet available (see Fig. 4 for a current pro-
totype of Symbrion and Replicator (SYMBRION, 2010;
REPLICATOR, 2010)). We use the simulation environment
Symbricator3D by Winkler and Ẅorn (2009) that was de-
veloped for these projects. We use the current prototype
design in the simulation (imported CAD data) as described
in (Levi and Kernbach, 2010). However, we simplified the

sensor setting to four proximity sensors (equally distributed
around the robot shifted by 90 degrees: upwards, forwards,
downwards, backwards). Symbricator3D is based on the
game engine Delta-3D and currently uses the Open Dynam-
ics Engine for the simulation of dynamics. The simulation
of friction and momentum is important because the evolved
gait behaviors rely on them. A drawback is that high compu-
tational complexity limits the number of evaluations in our
evolutionary runs. We are interested in systems that evolve
useful behaviors within a few hundred generations and with
small populations (order of 10).
We have tested the AHHS controllers with two variants of
the simulation framework. In the first version, the forces in
the joints, that connect the modules, were damped and small
displacements of the modules at the joints were allowed (i.e.,
simulation reacts moderately to big forces). It turned out that
caterpillar-like locomotion was favored because the damped
joints support wave motion. In the second version, the joints
were fully fixed. In this version of the simulation the evolu-
tion of locomotion is more difficult which will be reflected
by the best fitnesses in the following.
We start the scenario with five robot modules which are sim-
ply connected in a chain. Initially this robotic organism is
placed in the center of the arena. In order to increase the
complexity of the gait learning task, the central area is sur-
rounded by a low wall forming a square (its height is about
half the height of a robot module). Outside the wall sev-
eral cubes are placed that could only be sidestepped by the
organism. An identical robot controller is uploaded to the
memory of all five modules. The robot modules have to fig-
ure out their position (their role within the configuration),
that is, they have to break the symmetry of the configuration
in order to generate a coordinated gait. This is, for exam-
ple, possible because of different outputs of proximity sen-
sors depending on the modules’ positions. There are three
classes of modules defined by their characteristic sensor in-
puts: front module, back module, and modules in between.
We use identical controllers because we want to apply them
to dynamic body shapes in our future work and also a single
module should have all functionality. Hence, uploading het-
erogeneous controllers with predefined roles would not be
an option. In addition, using self-organized role assignment
will allow for high scalability (using the same controller for
different body sizes), plasticity (reorganization of roles in
changing body shapes), and new role types might emerge
that were unthought of by the human designer.
The fitness is defined by the covered distance of the organ-
ism. It is an aggregate fitness function (Nelson et al., 2009)
that evaluates the organism’s performance as a whole. Al-
though the organisms might achieve advancements early in
the evolutionary run, there is a bootstrapping problem. For
example, the downward proximity sensors will not give sig-
nificant input until the organism has figured out how to erect
the modules in the middle. In addition, controllers cannot
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Figure 5: Inverted pendulum, AHHS1 with 60 rules,
AHHS2 with 15 rules, comparison of fitness and evolution
speed (generation when 75% of max. fitness was reached).

evolve special techniques to climb the wall before they have
actually managed to move the organism there to explore it.

Results and discussion
Inverted pendulum

The evolutionary runs of the inverted pendulum were per-
formed with a population of 200 randomly initialized con-
trollers. The AHHS was set to 15 hormones. For AHHS1
60 rules were used and 15 for AHHS2. The runs were
stopped after 200 generations. Linear proportional selection
was used and elitism was set to one. The mutation rate was
0.15 per gene with a maximal, absolute change of range 0.1.
The recombination (two-point crossover) rate was 0.05.
For this task we configured AHHS with a left and a right
compartment. The left compartment incorporates the left
actuatorA0, the left proximity sensor, the sensors giving the
angles of the pendulum when it is in the left half etc. and for
the right compartment respectively.
The comparison of the best controllers of each run is shown
in Fig. 5(a). In this scenario, AHHS2 performs significantly
better than AHHS1 although in terms of evolution speed
there is no significant difference (see Fig. 5(b)). The AHHS2
design is the better choice in this task. The cause of the ad-
vantage of AHHS2 over AHHS1 in this task compared to
the indistinct situation in the gait learning task is unclear.
In future studies we will investigate whether this trend will
also be observed in more complex tasks from the domain of
multi-modular, evolutionary robotics.
One of the best evolved AHHS2 controllers showing inter-
esting behavior is analyzed in the following1. While it is
not possible to keep the pendulum in the upper equilibrium
for longer time due to noise, the controller still tries to maxi-
mize the time the pendulum is close to the upper equilibrium
mostly by small displacements of the crab. The controller
is mainly based on one hormone (H0), and four rules (see
Fig. 6). SensorS0 reaches its maximum, if the pendulum ap-
proachesφ = 0 (top position) from the left. It triggers small
displacements of the crab to the right, a behavior that keeps
the pendulum turning counterclockwise with slow passes at

1
http://heikohamann.de/pub/hamannEtAlAlife2010pend.mpg
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Figure 6: Inverted pendulum, analysis of one of the best
evolved AHHS2 controllers; only most relevant rules of the
evolved behavior are shown.

the top position. SensorS9 gives the intensity of negative
angular velocities of the pendulum (clockwise turns) and
triggers moves of the crab to the left. The proximity sen-
sors are not used at all. The walls are avoided by the crab
movements depending on position and turning direction of
the pendulum. Hence, the position of the crab is virtually
encoded in the motion of the pendulum.
See Fig. 7 for the sensor, hormone, and actuator dynamics.
This sample run begins with an initial (t < 50) move of the
crab from the center to the outer left due to transient dy-
namics ofH0 in the left compartment (see Fig. 7(a)). This
motion implements the up-swinging of the pendulum and
is followed by ten small displacements of the crab to the
right to keep the pendulum swinging counterclockwise. At
t = 1093 the turning direction of the pendulum changes (see
Fig. 7(b)). A sequence of right-left movements is initiatedto
reestablish the counterclockwise turning. Later att = 1933
a phase of low angular velocity is reached which causes ir-
regular movements of the crab that hold the pendulum close
to the top position.

Gait learning

The evolutionary runs of the gait learning task were per-
formed with a population of 20 randomly initialized con-
trollers. The configuration of the AHHS was set to 5 hor-
mones. The number of rules was varied between 20 and
300. The runs were stopped after 200 generations. Linear
proportional selection was used and elitism was set to one.
The mutation rate was 0.15 per gene (rule or hormone, with
a maximal, absolute change of range 0.1). The recombi-
nation (two-point crossover) rate was 0.05. One run of the
evolution (full 200 generations) took about 28 hours of CPU
time (on a single core of a standard, up-to-date desktop PC).
In the first version of the simulation (damped joints), the
evolved behaviors reach high fitness values for all investi-
gated settings of the AHHS (see Fig. 8). Directly approach-
ing the wall yields a fitness of about 0.7, getting one half of
the modules over the wall yields a fitness of 0.8, and a fitness

http://heikohamann.de/pub/hamannEtAlAlife2010pend.mpg
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(b) pendulum angle sensorS0 for 0 < φ < π/2 (purple), negative
angular velocity sensorS9 (lower half, yellow)

Figure 7: Inverted pendulum, most relevant hormone, sen-
sors, and both actuator control values for both compartments
(left and right) of the evolved behavior.
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Figure 8: 5-module gait learning with damped joints, com-
parison of fitness and evolution speed, which is indicated
by the generation in which 75% of the overall max. fitness
(1.41 = 0.75 × 1.88) was reached (if at all).

of above 1 is reached, if the wall is overcome. Typically the
evolved behaviors rely on two or three of the five provided
hormones only and make use of less than ten rules. However,
a too low number of rules results in too little exploration of
the behavior space. Based on preliminary tests we decided
to use 30 rules for AHHS2. One AHHS2 rule is potentially
active for each rule type, which corresponds to four active
AHHS1 rules. However, AHHS2 cannot optimize the pa-
rameters for each rule type individually. Still, we tested the
AHHS1 with 120 rules and also with a much higher number
of 300 rules. The results show no statistical significant dif-
ferences but show in a trend that the AHHS1 does not reach
comparable results as AHHS2 with corresponding rule num-
bers. In addition, the behaviors evolved by AHHS1 show
high variance depending on the deterministic chaos through
the complex system (simulation of physics).
Using the second version of the simulation (fixed joints), we
have tested smaller differences in the number of rules be-
tween AHHS1 and AHHS2. The results show that the more
realistic simulation of the joints complicates the evolution
of fast locomotion. However, the favoring of caterpillar-like

locomotion is reduced significantly and especially in case of
AHHS2 an unexpected vast diversity2 of different locomo-
tion paradigms is observed (see Fig. 9 for a short collection).
Basically we observed three classes of locomotion: erected
walking behavior, caterpillar-like locomotion, and locomo-
tion through jumps. The behaviors evolved using AHHS1
were less diverse. Quantifying these differences will be the
focus of future studies.

(a) walking (b) upside down over wall

(c) independent hinges (d) caterpillar-like

(e) jumping (f) warping over the wall

Figure 9: Screenshots showing the diversity of evolved loco-
motion paradigms (colors represent three selected hormones
in the primary colors according to the RGB color model).

The comparison of the best evolved behaviors is shown in
Fig. 10(a) and the speed of evolution is shown in Fig. 10(b).
55% of the AHHS2-runs with 50 rules and 38% of the
AHHS1-runs with 80 rules reach a best fitness that is within
80% of the theoretical maximum fitness of about 1.7. Sig-
nificant results are only reached for AHHS1 with 20 rules
compared to both AHHS1 with 80 rules and to AHHS2 with
50 rules. Noticeable is the bad performance of AHHS2 with
just 20 rules both in terms of final best fitness and speed of
evolution. From our observations we speculate that the ini-
tial exploration (during few of the early generations) of the
search space (basically the sensory-motor configurations)is
a relevant feature. Identifying the actual shortcoming of
AHHS2 in this context is part of our future research.

2
http://heikohamann.de/pub/hamannEtAlAlife2010.mpg
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Figure 10: 5-module gait learning with fixed joints, com-
parison of fitness and evolution speed, which is indicated by
the generation in which 75% of the overall max. fitness was
reached (if at all).

One important aspect in the differences between the two
controller types seems to be the different triggering of rules
in AHHS1 and AHHS2. The behaviors of AHHS1 clearly
show more fast-paced movements. With damped joints this
seems to be a disadvantage as smooth movements are less
likely. Using the fixed joints this sometimes results in fast
locomotion through little jumps.
The evolved structures are complex and the underlying pro-
cesses are often counter-intuitive. The in-depth analysisof
individual behaviors is alleviated by considering the number
of steps a rule has been active (triggered). Typically, about
one third of the rules trigger never or very seldom.

Post-evaluation and analysis

We have investigated the behavior of one of the best evolved
AHHS2 controllers in the second version of the simulator.
It shows a dynamic caterpillar-like motion3. It is noticeable
that the rules show characteristics of specialization and op-
timization. For example, often the (floating) index of the
output hormone is close to an integer (i.e., the rule’s effect
is mostly limited to one hormone) and often a rule weights
are above 0.5 showing the specialization of those rules. For
the investigated controller we have identified three most rel-
evant hormones:H2, H3, andH4. The angle of the hinge is
mainly controlled by hormonesH3 andH4 (see Fig. 11(a).
High values ofH4 turn the hinge towards+90◦ while any
value ofH3 > 0 turns the hinge towards−90◦. As a re-
inforcing effect there is a hormone rule that decreasesH4,
if H3 > 0. H2 shows the influence by diffusion of hor-
mones through the organism (see Fig. 11(b). A decreasing
concentration in the back module is consequently followed
by a decrease in the second last, middle, and second first
module, hence, forming a hormone wave that is propagating
through the organism. Finally, we investigated the influ-
ence of mutations. The leading design paradigm of AHHS2
was to improve the causality of the mutation operator (small
changes in genome result in small changes in the behavior).
This was done exemplarily by taking an evolved controller
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Figure 11: 5-module gait learning with fixed joints, analysis
of the evolved behavior.
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Figure 12: Fitness landscape neighborhood, fitness his-
togram of 35 samples of mutated controllers, fitness of the
original controller is for AHHS1: 0.84, for AHHS2: 0.81.

from each type. For both we produced 35 controllers by ap-
plying the mutation operator once for each. The evaluated
fitnesses of these 35 controllers are shown as a histogram in
Fig. 12. For AHHS1 the majority of mutated controllers had
a fitness of less than 0.2. For AHHS2 the majority of mu-
tated controllers reached about the original fitness. For both
types some controllers reached higher fitness due variance
introduced by deterministic chaos in the simulated physics.

Conclusion and Outlook
We have reported the application of our hormone control
approach to the domain of evolutionary modular robotics.
The automatic synthesis of controllers, that facilitate loco-
motion of organisms built from five robot modules, has been
effective in a majority of the evolutionary runs. Almost all
evolved controllers are able to generate a form of locomo-
tion that takes the organism at least to the wall. A majority
of the evolved controllers were able to overcome the wall.
An unexpected vast diversity of locomotion paradigms was
evolved especially in the second version of the simulation.
On the one hand, this shows the complexity of the gait learn-
ing task in modular robotics because there are many solu-
tions of similar utility. On the other hand, it shows the diver-
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sity of behaviors representable by AHHS controllers.
Whether the redesigned controller AHHS2 is generally su-
perior to the original AHHS1 design is still an open question.
However, in case of the inverted pendulum it performs sig-
nificantly better. In the gait learning scenario AHHS2 shows
a higher diversity and behaviors with smoother movements
resulting in more reliable locomotion.
There are many open issues and this research track is rather
at its beginning. Our future research will include the follow-
ing. The different possibilities of initializations need to be
investigated extensively. For example, the controllers could
be initialized with specialized sensor, hormone, and actua-
tor rules (i.e., weights of 1). Scalability and more complex
tasks from the domain of modular robotics will be inves-
tigated (e.g., organisms with more modules). We plan to
use environmental incremental evolution (e.g., steadily in-
creasing heights of walls) as reported by Nakamura et al.
(2000). The dynamic adaptation of rule numbers by evo-
lution will be investigated. Hence, we will evolve hor-
mone reaction networks through complexification similar to
(Stanley and Miikkulainen, 2004). Finally, we plan to check
the controllers’ exploration of the sensory-motor space, es-
pecially, during the initial generations to get a better under-
standing of what facilitates a high diversity of solutions.
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