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Abstract—The automatic generation of robot controllers by
machine learning or evolutionary computation is still challeng-
ing and even more so for collective robotics. We follow the
recently proposed paradigm of ‘population coding’ to compose
robot swarms for collective construction. We define a controller
template as finite state machine, enumerate a finite number of
specified robot controller types to choose from, and use evolution-
ary robotics to evolve effective homogeneous and heterogeneous
compositions of robot swarms using selections of these controllers.
Besides an objective for solving the actual construction task we
also add objectives for subtasks, and to minimize the number of
different chosen robot types. For three variants of a collective
construction task we find effective solutions with both homoge-
neous and heterogeneous swarms.

Index Terms—swarm robotics, population coding, heteroge-
neous swarm, self-assembly

I. INTRODUCTION

The automatic generation of robot controllers requires
methods of machine learning or evolutionary robotics [1].
Generating controllers for multi-agent or collective systems
is even more challenging. Multi-agent learning suffers from
the combinatorial explosion of possible agent-action pairs [2]
and similarly for the application of evolutionary computation
to swarm robotics [3], that is, evolutionary swarm robotics [4].

Here, we follow an alternative approach: the population
coding paradigm [5]. The idea is to define a finite set of robot
controller types from which we then compose the robot swarm
that solves the desired task. The robot controller types can be
seen as robot types with hardwired logics. The only remaining
freedom for programming is on the swarm level. In analogy
to baking a cake, the desired swarm behavior is generated
by choosing the right quantities of the right ingredients. For
a swarm of size N , we can form homogeneous swarms by
choosing N -times the same robot type or heterogenenous
swarms by choosing up to N − 1 of one type and at least one
different robot type. Correctly choosing numbers and types is
seen as an optimization problem, that we solve by evolutionary
computation. Hence, population coding can also be a method
to usefully limit the search space in an evolutionary swarm
robotics approach. Related studies on heterogeneous swarms
are: evolution of task specialization [6], [7] and formalization
of heterogeneity [8]. The main contribution here is the novel
application of population coding to collective construction.

II. TASKS AND ENVIRONMENT

A swarm of N = 10 simulated robots operates in a 10m×
10m rectangular arena surrounded by walls (see Fig. 1).

Fig. 1: Screenshot of the simulation: robots (blue) pull cylin-
ders (green) into the target zone (gray) to encircle the light
source (yellow) in the middle.

Fig. 2: Task performance is measured by coverage. 360 ray-
casts and only cylinders within the gray ring are considered.
The percentage of rays hitting cylinders is coverage.

20 cylinders with a radius of 0.1m serve as building blocks.
There is a light beacon in the middle of the arena. The robots
have a light sensor and use the light beacon for navigation. The
desired shape of the structure that needs to be built is defined
by a ring-shaped target zone marked in gray and encircling
the light beacon (ring at a distance from the beacon between
0.75 m and 1.25 m).

The task for the robots is to build a shelter around the
light beacon by pulling cylinders on the target zone. Task
performance is quantified by coverage, that is, how much light
is measured outside of the target zone (see Fig. 2). If there is no
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Fig. 3: Finite state machine of the robot controller template.

light measured outside of the target zone, then the robots have
built a perfect ring structure (100% coverage). The cylinders
are taller than the robots and the light beacon is positioned
higher than the robot height. Coverage is measured by ray
tracing where cylinders outside of the gray ring are ignored
(360 rays, gap between rays at ring about 0.018 m).

We study three variants of a construction task: basic sce-
nario, stay-in scenario, and stay-out scenario. In the basic
scenario task performance exclusively relies on coverage. If
at the end of the evaluation there are many cylinders on the
gray ring and they block a lot of light, then the swarm receives
a high reward.

For the stay-in scenario we introduce a second objective:
stay close to the light source. We use the distance d between
light source and robot to calculate a reward r = 1

d2 for
each robot in each simulation step. We use the sum over
all time steps and all robots as additional objective. The
rationale is to increase the task complexity because searching
for unused cylinders and staying at home are contradicting
subtasks. A solution could be a heterogeneous swarm with
one subpopulation specializing in searching/pulling cylinders
and another one staying close to the light source.

For the stay-out scenario we invert the reward. The objective
is to stay as far away from the light source as possible. The
rationale is again to increase the task complexity and pulling
cylinders towards the light contradicts the stay-out objective.

III. APPROACH

A. Robot controller template

Following the population coding paradigm [5] we define
first a simple finite state machine as a template robot controller
that roughly covers the required behavioral features. We de-
fine and implement three states covering primitive behaviors:
exploration, phototaxis, and anti-phototaxis (see Fig. 3). In
addition, we define two actions that a robot can trigger by
state transitions: pickup and drop of cylinders.

In state exploration a robot does a random walk and
avoids obstacles. In moments when no obstacle needs to be
avoided, the robot moves in straight lines and chooses a new
direction every two seconds with a random angle in the range
of [−45°, 45°] from its current direction. This enables the
robots to move smoothly in the arena without abrupt turns.
In state phototaxis a robot moves towards the light source and
avoids obstacles. The given scenario may result in situations
where the light is covered by cylinders, leaving the robot
without orientation. In these cases the robot switches to an
exploration behavior until it senses light and is able to move

input parameter range resolution # bits

duration T θT
[
0 s, 10 s

]
5 3

light L θlow
L

[
0, 1

]
5 3

light L θ
high
L

[
0, 1

]
5 3

cylinder detection D θD
{
1; 0;−1

}
3 2

- θA
{
0; 1

}
2 1

TABLE I: Parameters used to determine the transition of the
finite state machine controller template.

towards it again. In state anti-phototaxis the robot behaves
similarly except for moving away from the light.

When the pickup action is triggered by a transition, it is
only executed if the robot senses a cylinder nearby and is
currently not dragging another cylinder. In these cases, the
robot moves towards the cylinder and grabs it. This finishes
the pickup action and the next state is entered. The robot now
pulls the cylinder and moves slower until it drops the cylinder
again. Similarly, the drop action is only triggered if the robot
pulls a cylinder. If executed, the gripper releases the cylinder.
During the time a robot pulls a cylinder its avoidance behavior
is turned off. Otherwise robots would not be able to place
cylinders close to other cylinders.

Each of the three transitions of the finite state machine
(Fig. 3) has the same structure. It processes three sensor
inputs and takes five configuration parameters. The transitions
between the three states rely on the light intensity L, duration
in current state T , and cylinder detection D. We combine
them with five parameters as seen in Tab. I: minimal time θT
staying in the current state, low light threshold θlow

L , high light
threshold θhigh

L , cylinder detection θD, and instant action θA.
If the light parameters are mutually exclusive (θhigh

L < θlow
L ),

we do not consider them.
We distinguish three states concerning cylinder detec-

tion θD. There has to be a cylinder detected (1), there must not
be a cylinder detected (-1), and an indifferent state (0), that
always evaluates true regardless of any cylinder detection.

The instant action parameter θA is only binary and indicates
whether a cylinder should be picked up (1) or dropped (0). We
do not define a parameter for ‘no instant action,’ as it is not
required. The same instant action may be executed repeatedly
without any effect.

As the parameters are encoded digitally, possible values for
parameters are defined by a range and resolution. Values are
equally spread over the whole range. Parameters θT , θhigh

L ,
and θlow

L have a range of
[
0, 1
]

and a resolution of five giving
values

{
0; 0.25; 0.5; 0.75; 1

}
.

Combining all of the above, we get a logical expression δ
determining whether a transition is triggered

δ(T, L,D) =(T > θT )

∧ ((θlow
L < L < θhigh

L ) ∨ (θhigh
L < θlow

L ))

∧ (θD = 0 ∨D = θD) (1)

Based on each parameter’s resolution, we calculate the
amount of possible transition configurations as 5 × 5 × 5 ×



3 × 2 = 750. Given the three transitions in our finite state
machine, there are 7503 different robot controller types. For a
heterogeneous swarm we have 7503 options to choose from.
For a swarm size of N = 10, we get a set with an upper
bound of (7503)10 possible heterogeneous swarms.

B. Homogeneous versus heterogeneous swarms

Given the general finite state machine with its five param-
eters per transition (Tab. I), we have to decide whether we
want to implement a homogeneous swarm with one robot
type using a common controller or a heterogeneous swarm
with several different robot controllers. For our swarm of
N robots, we have to select controllers, the number M
of robot controller types that we want to use, and how
many of each of them. Swarm robotics is usually de-
fined based on homogeneous swarms, however, recent re-
search has shown that heterogeneous swarms may have ad-
vantages, too [9], [10]. We define a swarm configuration
C = (N,M, c1, c2, . . . , cM , n1, n2, . . . , nM ), for used con-
trollers ci of type i and number ni of robots that use con-
troller i with

∑
i ni = N . In general the resulting swarm

behavior of a swarm configuration C is difficult to predict
even for homogeneous swarms (M = 1). With a mathe-
matical micro-macro link [11], however, we could predict
the macroscopic effect of the microscopic robot behaviors,
define an analytic performance measure P (C) and formulate
the problem of finding the best configuration as a regular
optimization problem. As we have no micro-macro link and no
easily defined performance measure, here we need to evaluate
configurations in simulation, similarly to the leafcutter ants
example by Hamann et al. [5]. We use the swarm simulator
ARGoS [12] to evaluate swarm configurations.

C. Multi-objective optimization, sparsity, and hypervolume

The number of (7503)10 possible heterogeneous swarms
cannot be tested in a brute force attempt. Each evaluation
is based on a costly multi-robot simulation run. We need to
apply a more sophisticated optimization technique. Here, we
use a simple genetic algorithm [13]. As fitness function we
could simply assess the efficiency of the finished construction
according to its light coverage (and cumulative distance to the
light source for the stay-in and stay-out scenarios). However,
there is another option for an objective: sparsity. With sparsity
we mean the heterogeneity of the swarm, that is, the num-
ber M of used different controllers and how different the used
controllers actually are. Minimizing M is useful because each
additional controller comes with overhead. More controllers
also reduce the redundancy in the swarm and hence limit the
swarm’s robustness. We try to use as few different robot types
as possible.

There are different ways to define sparsity [14]. We could
use the number of used different robot types which corre-
sponds to the `0-norm. However, we prefer a more precise
measure of sparsity. We sum Hamming distances between
all robot genes (cf. [8]). Assuming robots with similar genes
behave similarly, a broken robot could be replaced by a similar

Robot Types Selector

1 2 3 8 9 10

AP-E E-P P-AP

3,0,1,3,1,1,1,3,1,0, 2,1,2,0,1

Genome

Robot Gene
Transition

1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Fig. 4: Two-part genome defining a list of controllers and
a selector list to assign robot types to robots (AP: anti-
phototaxis, E: exploration, P: phototaxis).

robot. Hence, we would have a higher degree of robustness.
We use this Hamming-based sparsity as the sparsity objective
in all following experiments.

With more than one objective we have a multi-objective
optimization problem. We use the standard framework of
NSGA-II [15]. In multi-objective optimization we do not get
only one best result but all Pareto-optimal solutions. The idea
is that we choose our favorite solution from that Pareto set after
the algorithm is finished, based on how we want to weight the
task performance over sparsity. For the stay-in and stay-out
scenarios we have a third objective of cumulative light.

We configure NSGA-II: tournament selection size four,
single-point crossover, mutation as bit-flip with probabil-
ity 0.04 per bit, population size 100, and 500 or 1,000
generations. We do 20 independent evolutionary runs per
setting. Evaluations are run in simulation for 2,000 ticks or
6,000 ticks.

We use the so-called hypervolume to easily visualize the
performance of our approach. The hypervolume is the volume
of the space that is Pareto-dominated by current solutions and
bounded by a reference point. Reference point is the nadir
point (worst case, both objectives minimal) [16], here: [0, 0].

D. Swarm configurations as genome

For the genetic algorithm of NSGA-II we need to de-
fine a genome, that is, an encoded representation of swarm
configurations C. We could enumerate all 7503 controllers
and then define a genome that contains only N = 10 as
assignment of which robot uses which robot type. However, a
mutation of such a number may switch to a very different
behavior and it would be particularly different to achieve
sparsity. Instead we introduce a two-part genome (see Fig. 4):
ten full parameter sets of controllers (‘robot type’) and ten
numbers to assign robots to this limited list of ten controllers
(‘selector’). Each controller (‘robot gene’) consists of the 3×5
transition parameters. This genome definition is complete
in the sense of not excluding potentially usefully solutions.
A fully heterogeneous swarm with M = N = 10 is possible
if all numbers in the selector are different. A homogeneous
swarm with M = 1 is possible if all numbers in the selector
are the same. Hence, a homogeneous solution may still be
relatively unlikely to achieve by chance but there are only



1010 possibilities instead of (7503)10. Also each of the 7503

robot types has a non-zero chance to be part of the solution.

IV. RESULTS

In a preliminary test we investigate the impact of the selector
part in the genome (Fig. 4). A comparison of genomes with
selectors versus genomes without selectors is given in Fig. 5c
that shows the hypervolume over generations. The difference is
significant and in favor of the genome with selector. A typical
example of a successful run is shown in Fig. 5a (initial setup)
and Fig. 5b (final situation).

A. Basic scenario

For the basic scenario we run NSGA-II for 500 genera-
tions. Evaluations in the simulation are run for 2,000 ticks.
The results are given in Fig. 6, top row. The hypervolume
plot (Fig. 6a) shows a steep initial increase as expected
and saturates after about 200 generations. Fig. 6b shows
the Pareto front of all 20 independent evolutionary runs. In
average a coverage of about 47% is reached. Hence, the
task is successfully solved. Several solutions, including the
best solution, have a sparsity of one (homogeneous swarm).
Other solutions have sparsity of about 0.85 corresponding to
swarms with homogeneous subpopulation of nine robots and
one different robot. The rectangular shape of the Pareto front
indicates a simple multi-objective problem, here probably
because sparsity is easily achieved.

The evolved best behavior1 is homogeneous and performs
as expected. Robots explore the area until they find a cylinder,
then switch to phototaxis and drag the cylinder to the target
zone. After dropping the cylinder, they move away from the
target with anti-phototaxis and explore the arena again. We
investigate the evolved controllers and find that two aspects
of the behavior need to be fine-tuned for good performance:
when to drop the cylinder and for how long to explore. All
successful behaviors evolved the same parameters for these
two aspects. Solutions with heterogeneous swarms have an
arguably dysfunctional robot that always stays in explore or
anti-phototaxis state. This way the robot takes itself out of the
game, such that it is not helping in transporting cylinders but
it also does not interfere with other robots. Hence, one could
argue that the swarm regulates the swarm density this way.
Still, a heterogeneous swarm seems suboptimal here.

B. Stay-in scenario

For the stay-in scenario we run NSGA-II for 1,000 gener-
ations. Evaluations in the simulation are run for 2,000 ticks.
In addition to the objectives coverage and sparsity, we have
a third objective of staying close to the light source. The
hypervolume plot in Fig. 6c shows that the evolutionary
approach is effective again. Here the Pareto plot (Fig. 6d) rep-
resents three objectives with sparsity being color-coded. The
objectives of staying close to the light source and achieving
high coverage are in conflict. This can be seen also in the

1video online: http://zenodo.org/record/1258018/files/1 Basic.mp4
(displayed letters indicate e: exploration, p: phototaxis, and a: anti-phototaxis)

Pareto plot (Fig. 6d), where the area around the upper right
corner is empty. Instead, the solutions spread along a diagonal
to balance the two objectives. Also a gradient in sparsity can
be seen. The closer solutions get to the upper right corner
the more they tend to be heterogeneous. These heterogeneous
swarms use specialized robots that stay at the light (called
stay-bot) and other robots that move cylinders (called move-
bot). Homogeneous swarms use a generalist strategy where
robots move cylinders while spending as much time at the
light as possible. The Pareto plot shows that heterogeneous
swarms tend to perform better.

We take a look at the behavior of a swarm with eight
move-bots and two stay-bots.2 Move-bots show a behavior
comparable to the behavior in the basic scenario. However,
they spend less time in exploration. They move away from the
light source but then try to almost immediately return again
while grabbing any cylinder they encounter. Seemingly this is
a good compromise between staying close to the light and still
doing some construction. This behavior is also optimized for
the length of the evaluation because in longer runs the short
exploration time would not often enough be sufficient to find
cylinders. The cylinders that were closer to the light initially
would then already be used for construction.

Stay-bots remain in phototaxis and always stay near the light
source. Interestingly, they take a cylinder with them. At the
beginning of the simulation stay-bots explore the arena until
they find a cylinder. Only then they switch to phototaxis and
move towards the light source with the cylinder. A stay-bot
then ensures to stay in phototaxis in the following way. The
transition from phototaxis to anti-phototaxis is only triggered
if there is no cylinder in range. By bringing a cylinder, the
stay-bot makes sure to stay at the light. It is unclear whether
this is the best behavior to ensure staying in phototaxis. Other
options could be to prevent the transition by setting impossible
light parameters.

C. Stay-out scenario

For the stay-out scenario we run NSGA-II for 1,000 gen-
erations. Evaluations in the simulation are run for 6,000 ticks
to avoid behaviors being optimized for short evaluations.

The hypervolume plot (Fig. 6e) indicates effective evolu-
tioanry runs and shows a number of bigger steps even after
600 generations. The Pareto plot (Fig. 6d) shows a clear front.
Low sparsity seems to be achieved easily.

We take a look at a particular solution3. The swarm has
nine robots of one type and only one robot with a different
controller that stays in exploration state at all time. All
other robots grab a cylinder and enter phototaxis. They leave
phototaxis if they have stayed minimal time θT = 2 [time
steps] in this state and sense another cylinder θD = 1. They
drop the cylinder, start anti-phototaxis again, and stay for
time θT = 3 in that state. Then exploration follows and the
robot grabs a cylinder again. This behavior leads to a fast

2video online: https://zenodo.org/record/1258018/files/4 Light.mp4
3video online: https://zenodo.org/record/1258018/files/5 Antilight.mp4
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Fig. 5: Left and middle panel: screenshots of the simulation, initial setup with randomly distributed robots (blue) and cylinders
(green) and final situation with six cylinders in the target zone. The swarm was evolved for the basic scenario. Right panel:
hypervolume plot of evolutionary runs with and without selector in the genome, with selector clearly better.

delivery of cylinders from areas far away from the target zone.
Cylinders are moved rapidly from the edges of the arena to the
target zone but not necessarily all the way. The final delivery
to the target zone is done by robots of the same type but can
be considered a different behavior. If there are many cylinders
near a robot, it cycles through the states quickly. It drags and
drops a cylinder bit by bit to the target zone. As there is
usually a group of cylinders, it drags a different cylinder in
each iteration, hence, moving the whole cluster. As the light is
blocked by cylinders, robots can hide in the shadow of cylinder
clusters and satisfy the stay-out objective.

V. DISCUSSION AND CONCLUSION

We have successfully applied the population coding
paradigm to swarm construction. The results indicate that the
emergence of heterogeneous and homogeneous swarms is not
always intuitive and hence indicates a possibly challenging
problem. Whether heterogeneous swarms can be efficient for
a given scenario depends on a division of labor, a subsequent
task allocation, and task specialization (cf. [7]). Whether
division of labor is possible and useful depends on whether
the task allows for a certain modularity in the form of subtasks
(e.g., heterogeneous solution for the stay-in scenario with
stay-bots and move-bots). These subtaks then need to be
worked on by a minimum number of assigned robots each.
We would expect each subtask to require a different behavior,
hence allowing for and possibly requiring task specialization to
outperform competing homogeneous swarms (e.g., advantage
of having stay-bots that stay close to the light while move-
bots do the construction). Additional complexity is introduced
if the subtasks are mutually dependent such that a subpop-
ulation specialized on task A may be of no use without a
subpopualation specialized on task B and vice versa (not the
case for the stay-bot and move-bots example). The required
evolutionary dynamics corresponds to the problem of evolving
a communication system with the chicken-and-egg problem
that senders without receivers are of no use and vice versa.

Concerning the actual construction task we found that
relatively simple behaviors are effective. For example, in the
discussed construction behaviors there is no specific strategy
to place cylinders. However, the robots tend to place them
efficiently because they place them in bright areas. The light
sensor detects low light intensities behind already placed
cylinders and prevents the robot from placing cylinders in
inefficient positions. This can be interpreted as a form of
stigmergy but is obviously dependent on the specific scenario
and light setting here.

In future work we plan to increase the task complexity, to
add a further subtask, and to study self-repair mechanisms to
react to damage in the construction.
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