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Abstract—Pedestrians and cyclists are some of the most
vulnerable, but also least predictable traffic participants. Due to
their ability to move in urban environments with high degrees
of freedom and sudden changes of direction, their movement
is still challenging to predict. We present a driver assistance
system that tackles some of these challenges. Our system consists
of a world model made of a variational autoencoder and a
long short-term memory network. The world model takes vision
and action data from the perspective of the vulnerable traffic
participant and generates a visual prediction (image) of their
environment up to one second in advance. The second part of
our system is a transformer-based description system that takes
the predicted perceptions and here, as a showcase, abstracts
them down to a textual warning if a collision between car and
vulnerable traffic participant seems imminent. Our description
system helps contextualize the dangerous situation for the driver
and could be extended to other driver assistance systems, such
as blind spot detection. We evaluate our system on a dataset
generated in simulations using CARLA.

Index Terms—autonomous driving, machine learning, video
description, world models

I. INTRODUCTION

Due to the continuously increasing demand for automo-
biles over the years, road traffic injuries became one of the
leading causes of death. According to the World Health Orga-
nization’s report on road safety in 2018, around 20-50 million
people experience non-fatal injuries and 1.35 million people
die each year, globally [1]. Introducing roundabouts has been
effective in reducing the frequency and severity of accidents
in comparison to traditional stop-controlled intersections.
According to a study by the Federal Highway Administration,
they resulted in a 90% reduction in fatal accidents, a 75%
reduction in non-fatal ones, and a 35% reduction overall [2].
However, they led to higher risk than intersections for cyclists
due to narrower lanes and stronger curves. A cyclist is 1.4
times more likely to be involved in an accident that leads to
an injury in a roundabout [3]. Therefore, developing methods
to improve traffic safety became an immediate necessity.

The recent introduction of automated driver assistance
system (ADAS) functions, such as adaptive cruise control,
lane keeping assist, automatic emergency braking, blind spot
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detection, etc. have proven to improve road safety [4]. Still,
the development of further ADAS functions that consider
the safety of vulnerable road users (VRUs), i.e., pedestrians
and cyclists, could significantly reduce the casualty numbers
mentioned above. In urban areas, VRUs are heavily involved
with vehicles in traffic, which can not be properly detected
and tracked using the current radar-based systems [5]. How-
ever, the recent success of vision-based machine learning
solutions indicates their enormous potential for such ADAS
functions. Predicting VRU trajectories and behavior is crucial
for ensuring their safety as well as vehicle passengers. If an
autonomous vehicle can accurately predict the movements of
pedestrians, it can take appropriate actions to avoid collisions
and ensure safe and smooth driving.

This paper builds upon previous work, where vision-based
prediction models were trained to anticipate the behavior
of VRUs in a simulated unsignalized pedestrian crossing
scenario [6]. In this work, we train prediction models in more
dangerous traffic situations. More specifically, we design two
scenarios. The first one involves a pedestrian that crosses
a signalized 4-way crossing. In the second one, a cyclist
enters a roundabout, then exits at the third-next exit. The
two situations are considered the most dangerous situations
for both pedestrians and cyclists. We collect synthetic data
from the perspective of the pedestrian and cyclist. We use the
data to train convolutional variational autoencoder (VAE) and
long short-term memory (LSTM) networks. The networks
can be used to build an ADAS that predicts the traffic and
signals a warning in case of predicted dangerous situations.

Finally, we train a video captioning network which pro-
vides a base for semantic processing of traffic situations as
a showcase. This semantic processing base could be used
as input for various ADAS functions and output types, such
as an alarm signal for impending collisions, an audio-based
lane keeping system, or a textual description of the traffic
situation. In our case study, the network textually describes
predicted footage and raises warnings in case of anticipated
accidents.

II. RELATED WORK

Traffic prediction approaches can be broadly categorized
into three perspectives: vehicle, pedestrian, and road infras-



tructure. Many of these approaches rely on datasets that
include images, as well as prior information about the actions
and environment of the pedestrians being tracked [7]–[9].
These priors provide additional context that can help to
account for feature relevance and enhance prediction per-
formance. Here, we present relevant approaches from each
category, as well as video captioning.

A. Vehicle perspective-based predictions

Vehicle perspective-based prediction approaches typically
use monocular RGB images as input, where autoencoders
are used to convert such images into a lower-dimensional
representation to improve processing efficiency [10]. For
instance, Hoy et al. [11] implemented an autoencoder-based
approach to track objects in the Daimler Pedestrian Path
Prediction Dataset [12] and generated a binary classification
of pedestrian crossings/stops. Poibrenski et al. [13], [14]
proposed a multimodal approach to trajectory prediction that
involves feeding past trajectories and pedestrian scales into
a conditional autoencoder with a Recurrent Neural Network
(RNN) architecture. Makansi et al. employed mixture density
networks to anticipate the behavior of pedestrians in traf-
fic [15]. To achieve this, they utilized semantic segmentation
data to establish a reliability prior, which allowed them
to identify all potential future locations for a particular
object class. They used this information to account for the
movements of the ego-vehicle and make predictions about the
future positions of pedestrians. Mangalam et al. segmented
the pedestrian motion and pose prediction task into two
distinct components, namely local and global motion [16].
To tackle these individual subproblems, they utilized an RNN
that employs a recurrent encoder-decoder architecture. Yin et
al. [17] utilized a transformer network, which is another state-
of-the-art encoder-decoder architecture example, to combine
various inputs such as ego-vehicle speed, optical flow, and
previous pedestrian trajectories to forecast trajectories.

B. Pedestrian perspective-based predictions

Egocentric pedestrian trajectory prediction, where the tra-
jectory is predicted from the first-person point of view, is
a challenging task due to the highly dynamic nature of the en-
vironment and the limited field of view of the camera. There-
fore, researchers proposed incorporating additional sensor
data, such as inertial measurement units (IMUs), to improve
the accuracy of the predictions. For example, Park et al. [18]
introduced an EgoRetinal map representing the surrounding
indoors environment, encoding occlusion likelihood, depth
information, and semantics. Using a convolutional neural
network (CNN), they generate a set of credible trajectories.
To confirm occluded spaces, they assess the frequency with
which the predicted trajectories are in proximity of the
occluded regions. Also, using a person’s past locations,
body poses, and first-person camera images, Qiu et al. [19]
proposed an encoder-decoder framework based on LSTM
to predict future trajectories. In traffic scenarios (e.g., road
crossing), Petzold et al. [6] conducted a study where they
gathered data from the pedestrian viewpoint in simulations

to train ANNs. The study utilized a synthetic environment
generated through the CARLA traffic simulator [20]. The
researchers trained VAE and LSTM networks to predict the
positions and trajectories of VRUs in the immediate future,
up to one second ahead.

C. Infrastructure-based predictions

Alternative methods for traffic prediction do not rely on
either the vehicle’s or the pedestrian’s perspectives, but
rather on infrastructure-based sensors. For example, Zhao
et al. [21] introduced a pedestrian tracking system that
employs roadside LIDAR data as input to a Deep Autoen-
coder Neural Network. At road intersections, LIDAR sensors
were set up to gather information on pedestrians, including
their presence, position, speed, and direction. Also, Sun et
al. [22] used an external SLAM system and suggested the
T-Pose-LSTM, which enables real-time 2D predictions of
pedestrian trajectories. Other approaches used 2D maps for
readily available training data [23]. For example, Zhang
et al. [24] utilized a standard LSTM to predict pedestrian
jaywalking based on video data from a camera placed at
a crosswalk. They transformed the perspective of the video
data to a 2D map representation and incorporated various
factors such as location, traffic light state, and social fac-
tors to make predictions. Similar to the previous approach,
Vasquez et al. [25] used 2D maps and implemented Inverse
Reinforcement Learning (IRL) to safely navigate a mobile
robot through pedestrian crowds. Also, Fahad et al. [26] used
IRL to generate authentic pedestrian trajectories with social
interactions on a 2D navigation grid.

D. Video captioning

Given the increasing importance of video content in our
daily lives, video captioning networks have become an active
area of research and development, with numerous advanced
models being developed and tested to improve their accuracy
and performance. For example, Ging et al. [27] presented
a cooperative hierarchical transformer architecture (COOT)
that incorporates long-range temporal context in a cross-
level manner. The authors employed two novel components
to model interactions within and between hierarchy levels,
specifically an attention-aware feature aggregation module
for modeling frame and word interactions, and a contextual
transformer for modeling local and global context interac-
tions. Furthermore, they introduced a cross-modal cycle-
consistency loss to ensure semantic alignment between clips
and sentences. SwinBERT [28] is another example that is
composed of two modules, namely the VidSwin Transformer
and the Multi-modal Transformer Encoder. The VidSwin
Transformer takes in raw video frames as input and produces
a spatio-temporal representation of the video as a sequence.
This sequence is then utilized as an input for the Multi-modal
Transformer Encoder, which transforms it into a natural
language description. This approach differs from previous
research by incorporating a built-in generator for spatial-
temporal representations within the transformer architecture.
As a result, it can learn using variable numbers of video



tokens and end-to-end training, eliminating the need for
offline-extracted video features. The model also uses BERT
Transformer [29] for natural language generation, making it
a fully transformer-based architecture.

III. METHODS

Our contributions can be separated into three compo-
nents: a realistic simulation scenario with fully control-
lable pedestrians containing roundabouts and traffic lights
in CARLA [20], a prediction model [30] for cyclist vision
in traffic, and a captioning and data collection method for
swinBERT (see Section II-D) that transforms it into a driver
assistance system for collision prediction.

In our approach, we collect action and vision data for
pedestrians and cyclists in CARLA. Using this data, we
train a VAE-LSTM vision prediction model [6] to generate
predicted vision data. This in turn is the input to our textual
description model, which interprets a sequence of actual and
predicted vision data. If our description model predicts an
anomalous scene, it warns the driver of a potential accident.

A. CARLA-based traffic scenarios

Our data generation and collection methods are based
on [6]. We designed a map that resembles a German town,
as, for our case, this ensures realism and facilitates a later
transfer of our pedestrian perception prediction model to
real-world data. The map consists of a 4-way intersection
and a roundabout, providing relevant scenarios for collect-
ing pedestrian and cyclist data. To generate traffic scenario
data, the map is populated by a specific traffic participant
whose perspective we use to collect data and multiple other
pedestrians and vehicles (see III-B). Depending on their
mode of locomotion, the data-collecting traffic participant
is either called an ego-pedestrian or an ego-cyclist. The
ego-pedestrian’s movement is controlled by two finite state
machines (FSMs). The other traffic participants, including
the ego-cyclist, are controlled by CARLA’s AI systems. The
roundabout has 5 exits, 2 car lanes and a cyclist lane, which
we modeled in CARLA as a modified car lane. Cars are only
spawned on car lanes and cyclists are only spawned on the
cyclist lane. To prevent cars from merging onto the cyclist
lane, we have disabled automatic lane switching.
The 4-way intersection contains three traffic lights with
realistic light patterns. CARLA does not provide pedestrian
behaviors that are compatible with traffic lights out of the
box. Therefore, we implemented the waiting behavior of
pedestrians at intersections by disabling their AI controllers
whenever they approach a red traffic light. This is deter-
mined by the orientation and position of the pedestrian.
The ego-pedestrian is controlled by two FSMs. One FSM
controls the body movements and the other FSM controls
the head. We define the ego-pedestrian’s starting position.
The ego-pedestrian then moves along the sidewalk, until
they encounter the traffic light. They turn right by 90◦ and
check the status of the traffic light. When the traffic light is
green, the ego-pedestrian looks left to check if any vehicle
is approaching. If the intersection is clear, the ego-pedestrian

crosses the street. While the light is red, the body FSM stays
in a waiting state (look) and the ego-pedestrian stands still in
front of the traffic light, mimicking a waiting behavior similar
to the pedestrians controlled by CARLA. After the traffic
light the ego-pedestrian follows the sidewalk. See Fig. 1 for
the ego-pedestrian’s body FSM and see Fig. 2 for the ego-
pedestrian’s path.
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Fig. 1: A finite state machine describing the ego-pedestrian’s
movement in the recorded traffic light scenarios. Turn angles
are given in clockwise direction.

Fig. 2: A top-down view of the ego-pedestrian’s path through
the traffic light environment in CARLA.

B. Data collection

To collect data for our prediction models, we generate
1000 episodes with 1000 time steps each in both scenarios.
The first scenario is a cyclist traversing a roundabout and
the second scenario is a pedestrian crossing a traffic light.
We sample the number of traffic participants populating each
episode from a uniform random distribution. This guarantees
varied but realistic scenarios. For the cyclist episodes, we
sample a uniform distribution unif{70, 100} for the number
of cars, unif{150, 220} for pedestrians and unif{25, 35} for
other cyclists. The same is done for cars (unif{20, 60})
and pedestrians (unif{150, 300}) in the traffic light variant.
Starting locations and destinations for the AI traffic partic-
ipants are randomly generated within within the bounds of
expected traffic behavior. Vehicles are placed on the street
and pedestrians are placed on the sidewalk.
To collect data in each time step t, we attach a camera to
the head joint of the ego-pedestrian and -cyclist, capturing



their view of the surroundings. We use this camera to collect
semantic segmentation data using CARLA’s own semantic
segmentation camera [20] and RGB data. Both RGB and
semantic segmentation images have a resolution of 450×850.
The semantic segmentation can identify 26 types of objects.
These include the 23 base classes from CARLA, a class
for crosswalks (present at the entrances and exits of the
roundabout) and two classes for traffic lights that encode
the state of the traffic light for the approaching pedestrian
(red or green). To obtain the traffic light state in semantic
segmentation, we match the RGB and segmentation images
pixelwise. To determine the traffic light state, we use the
average color of all RGB pixels corresponding to pixels of
the traffic light class in the segmented image. Additionally,
we save the ego-agent’s action vector at in each time step.
For the ego-cyclist, at consists of the cyclist’s speed, steering
angle (direction of movement) and yaw angle (yaw angle
of the camera). For the ego-pedestrian, we save movement
speed, body rotation (direction of movement) and head
rotation (yaw angle of the camera).
In the roundabout episodes we simulate a cyclist entering
the roundabout from the south-most entrance and exiting
it at the north-most exit, as shown in Fig. 3. As the ego-
cyclist navigates the roundabout, the other AI-controlled
vehicles and cyclists also navigate the roundabout, entering
and exiting at randomized times and streets. In multi-lane
roundabouts in Germany, the outermost lanes have the right
of way. Therefore, a car exiting the roundabout has to wait for
passing cyclists on the outermost lane. Since CARLA does
not support this behavior out of the box, we implemented it
post-hoc and discarded any recorded episodes in which cars
cut off the cyclist. We do not count the discarded scenarios
against the size of our dataset. An example frame of the ego-
cyclist’s perceptions is shown in Fig. 4.
In the traffic light episodes, the ego-pedestrian approaches
the intersection from the south on the left side of the street
(see Fig. 2). They cross a traffic light to their right and then
continue eastward on the sidewalk. During the episode, other
vehicles and pedestrians also traverse the intersection with
random start and target points. Before we spawn all traffic
participants and start to collect data, we run the scenario for
a random number of ticks (unif{0, 1600}). This ensures that
the traffic lights are in a random state at the beginning of
each episode.
Due to constraints in compute resources both during training
and execution of our models, we resize all images down
from 450 × 850 pixels to 45 × 85 pixels before training.
To avoid losing details like street markings or distant traffic
lights during the resizing, we transform the semantically
segmented images from their original RGB encoding to a 26-
channel encoding beforehand, representing all classes present
in the original image’s pixels proportionally. Our dataset Ψp

contains the traffic light scenarios with the ego-pedestrian p.
Each sample ψp ∈ Ψp contains the action vector a, an RGB
image xRGB and a semantically segmented image xsem. Our
dataset Ψc contains the roundabout scenarios with the ego-
cyclist c. Here, each sample ψc ∈ Ψc contains the action

vector a and a semantically segmented image xsem. Both
datasets contain 1m samples each.

Fig. 3: A top view of the ego-cyclist’s path through the
roundabout environment in CARLA.

Fig. 4: The ego-cyclist’s perception as captured in CARLA
(down-sampled to 45× 85 pixels, left) and reconstructed by
our VAE (right).

C. Training VAE-LSTM prediction models

Our perception prediction models consist of a VAE and an
LSTM. They predict a traffic participant’s (ego-pedestrian or
ego-cyclist) perception at the next time step (60 ms ahead)
using images and actions as inputs. Therefore, they constitute
a type of world model [30]. For the pedestrian prediction
model, the VAE encodes the semantically segmented image
xt captured by a pedestrian at time step t and compresses
it into its latent vector representation zt. The LSTM takes
latent vector zt and action at to predict latent vector zt+1

at the next time step. Since LSTMs have limited memory
capacity [31], the LSTM does not operate directly on high-
dimensional image inputs. To reach a desired time horizon for
predictions, the LSTM is fed with its own output (and a new
action vector at+1 ∈ Ψp) repeatedly. The cyclist prediction
model operates in the same way.
We create the pedestrian perception model using dataset Ψp

and the cyclist prediction model using Ψc. Both models have
the same architecture. Their VAEs consist of 4 convolutional
and 4 deconvolutional layers. Their LSTMs consist of a
single layer with 512 memory cells. We split both datasets
into 86% training data, 10% validation data and 4% test data
each. The VAEs are trained on the semantically segmented
images of each sample ψ ∈ Ψ individually, while the LSTMs
are trained on sequences of 1000 consecutive samples with
each sequence corresponding to one collected episode. The
samples for LSTM training consist of the latent vector z



generated by the VAE and the collected action vector a.
During VAE training we use the Kullback–Leibler (KL)
divergence [32] not only as regularization loss, but also as
reconstruction loss. The pixels in our semantically segmented
images represent classes like ”sidewalk” or ”traffic light
(red)”. They are categorical variables rather than real-valued
variables. For this reason, we did not chose a more typical
image reconstruction loss like L2 loss. The KL divergence
is able to map the different classes to each other without
inferring similarities between classes that do not exist. The
VAEs were trained for 150 epochs on batches with size
2000. After training we picked the models with the lowest
validation loss to prevent overfitting.
To make our model robust against randomness and uncer-
tainty in the environment, we make our LSTM a mixture
density network (MDN), similar to Ha and Schmidhuber [30].
An MDN does not produce fixed output values, but a proba-
bility density function p(z) containing a mixture of Gaussian
distributions. To obtain a prediction for the next time step,
we sample from p(z). The level of randomness is controlled
by the temperature variable τ ∈ [0, 1]. If τ ≈ 0, p(z)
returns the median of the distributions and thus behaves
deterministically. A high value of τ makes the prediction
task harder, as it introduces uncertainty. During training, this
may lead to a more robust prediction network. We train the
LSTMs with τ = 1×10−8 for 1.8×106 steps on batches with
size 2000. We chose the networks with minimum validation
loss to prevent overfitting.

D. Training a video description model

We use the video description model swinBERT [28] in our
ADAS, as it confers multiple advantages over using a simple
binary classifier that only detects an impending collision
or not. Using a transformer-based approach may introduce
overhead and in the presented use case (see Sec. IV) we
only need a binary signal in the end, but swinBERT supports
the generalization to other features of traffic. For example, it
may easily be extended to cover traffic in residential areas.
Furthermore, a video description model may be more robust
regarding noise and it is more expressive than a binary
classifier. It could cover different types of accidents and
express uncertainty. While we use a textual description and
post-process it into a binary collision/no-collision signal, the
output could also be an alarm signal, a numeric danger
estimator or spoken descriptions. Furthermore, the semantic
information of the model could also be used for other ADAS
use cases, such as a parking assitant or blind spot detection.

We used swinBERT trained it on our dataset Φdesc. This
dataset was collected in a similar way to Φp and Φc. It
consists of 100 semantic segmentation frame sequences of the
traffic light episodes and 200 semantic segmentation frame
sequences of the roundabout episodes. Most of the sequences
show normal and safe traffic situations similar to Φp and Φc,
but 37 pedestrian episodes and 64 cyclist episodes consist of
dangerous situations between cars and pedestrians or cyclists.
These situations are forced by making the AI-controlled cars
ignore VRUs. For the traffic light episodes, the dangerous

situations consist of cars making a right turn and thus ap-
proaching the traffic light and ego-pedestrian from the left. In
the roundabout episodes, cars exiting the roundabout cut off
the cyclist or collide with them. Using these episodes, we aim
to teach swinBERT how to identify if an accident occurs. We
retrain swinBERT by generating videos out of these episodes.
To generate ground truth captions we evaluated the action
vector a and manually classified the episode as ”accident”
or not. Furthermore, we manually classified the environment
of each episode according to the presence of other traffic
participants. We only use one third of an episode per video,
equaling 13 s of footage. By using shorter videos, we increase
the probability that the captions describe a collision event
present in the video, as the event is always relatively short (1
to 3 seconds). After removing anomalous videos, this results
in 847 captioned videos.

The captions for the pedestrian episodes are generated in
the format shown in Table I. The alternative and optional
modes in the sentence structure provide a rich semantic
context to the classification and enable an easy extension into
other ADAS applications, such as movement prediction for
other cars. We used the split for training (86%), validation
(10%) and test data (4%) we also used for our prediction
model. After training, we chose the network with minimum
validation loss to prevent overfitting.

IV. RESULTS AND DISCUSSION

We evaluate our ADAS in four experiments. The first two
experiments aim at evaluating the text description model’s
capabilities when using synthetic data taken directly from
CARLA. We conduct one experiment based on our traffic
light episodes and one experiment based on the roundabout
episodes. The second set of experiments uses the same
episodes as the first two experiments, but the input data is
generated by our VAE-LSTM prediction model instead of
CARLA. The experiments can be found in our video.1

A. Evaluating our traffic description model on CARLA data

In the first two experiments, we evaluate the performance
of our text description model trained on our dataset Φdesc

collected in CARLA, while focusing specifically on the
accident detection rate. After training, our model has reached
88% accuracy according to the BLEU-4 metric.

For the traffic light episodes with the pedestrian, we
collected a total of 37 accident episodes. These episodes
were split into training set (20 accidents), evaluation set (8
accidents) and test set (9 accidents). As the first two sets were
used in training, we examine our model’s performance using
only the test set. To evaluate the accident detection perfor-
mance of our description model, we count an episode as a
detected accident if the description contains the word “dan-
gerously”. Our model captioned no scenario with the word
“dangerously” that did not contain an accident. Therefore,
the model’s false positive rate is 0. Out of the 9 accidents
in the test set, our model detected 3. These accidents are

1https://vimeo.com/854150737

https://vimeo.com/854150737


separable into three categories: accidents involving the ego-
pedestrian, “close calls” that caused the pathing of another
pedestrian to react to the presence of a car, and collisions
between other pedestrians and a car. The model detects all
3 accidents that involve explicit collisions between other
pedestrians and vehicles, but it does not comment on the
direction from which the vehicle is approaching. However,
the model does not detect 3 close calls, in which a pedestrian
stops in their tracks right before the collision and attempts
to reroute around the car. Moreover, the description model
also does not detect any accidents or close calls involving
the ego-pedestrian. We conclude that our description model is
sensitive to visible contact between a car and a pedestrian, but
is not able to interpret the movement changes of a pedestrian
as an accident. Ego-pedestrian collisions are challenging for
the description model, because they are often hardly visible
on the video input data.

We collected 64 accidents in the roundabout episodes with
the cyclist. 55 accident episodes were used in the training
set, 4 in the validation set and 5 accidents were evaluated in
the test set. Since we used CARLA’s vehicle motion system
for the ego-cyclist, all accidents in the roundabout set are
close calls. This means that the ego-cyclist braked and no
collision occurred. The video description model detected all
5 accidents in the test set and had no false positives. Hence,
we assume that our video description model is more sensitive
to camera movement in the roundabout episodes than in the
traffic light episodes. For 3 out of 5 accidents, the description
model was also able to detect if the car approached from the
left or from the right.

B. Evaluating our traffic description model on predicted data

In the second set of experiments, we applied the method-
ology described in IV-A to outputs of our prediction models.
We took the set of evaluation data already used in IV-A
and iteratively applied our prediction models, generating
predictions with a lookahead of 1 s. We then generated textual
descriptions for the predictions.
The video description model shows comparable performance
on recorded and predicted pedestrian data. The model de-
tected 3 out of 9 pedestrian accidents. It recognized explicit
collisions, but could not identify ”close calls” or collisions
with the ego-pedestrian. The evaluation also yielded one
false positive out of 24 non-accident videos. We assume
that this false positive occurred due to a prediction artifact
that caused a sudden shift in camera perspective. Matching
the accuracy on collected cyclist data, our video description
model detected all accidents in the predicted cyclist videos.
There were no false positives. We believe that the cyclist
data is not as susceptible to false positives as the pedestrian
data, because the camera movement through the roundabout
is smoother than the abrupt movement of the pedestrian at
the traffic light.

V. CONCLUSION AND FUTURE WORK

We have extended our ADAS toolchain from Petzold et
al. [6] to not only incorporate more diverse traffic situations,

(a) ”a pedestrian walks on the
sidewalk and then waits at traffic
light as a car gets dangerously
close.”

(b) ”a cyclist rides around the
roundabout with other cars
around”

Fig. 5: Two example captions. We generated caption (a) from
a recorded traffic light video and caption (b) from a video
generated by our roundabout prediction model.

but also extended its functionality to provide an interface
between prediction and driver. We have trained a world
model that models a pedestrian navigating through a signaled
intersection and we have a trained a world model representing
a cyclist traversing a roundabout. While we require multiple
world models for different traffic situations, selecting the
correct model requires only a classification of the observed
traffic environment. We have shown that our world models do
not only predict regular traffic situations, but are also capable
of representing dangerous situations, such as near-misses or
collisions. We have introduced a unified transformer-based
traffic description model that is capable of differentiating
between accidents and safe traffic scenarios in both environ-
ments. The semantically rich output of the traffic description
model could be used as a base in a wide range of different
ADAS systems. In future work, we intend to extend this
model to express the degree of uncertainty regarding the
prediction and description accuracy. Furthermore, we would
like to develop the missing components in our toolchain and
close the loop between car and driver. At this time we are
able to display warnings about an upcoming traffic situation
to a driver, but the input data for our world models is not
obtainable yet outside of a simulation. To remedy this, we
have to transform the perspective of a car-mounted camera to
a VRU’s perspective and we have to generate the VRU’s most
probable actions based on information about the environment.
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