
Collective Decision-Making and Change Detection with Bayesian Robots
in Dynamic Environments

Kai Pfister1 and Heiko Hamann2

Abstract— Solving complex problems collectively with simple
entities is a challenging task for swarm robotics. For the task
of collective decision-making, robots decide based on local
observations on the microscopic level to achieve consensus on
the macroscopic level. We study this problem for a common
benchmark of classifying distributed features in a binary
dynamic environment. Our special focus is on environmental
features that are dynamic as they change during the experiment.
We present a control algorithm that uses sophisticated statistical
change detection in combination with Bayesian robots to classify
dynamic environments. The main profit is to reduce false
positives allowing for improved speed and accuracy in decision-
making. Supported by results from various simulated exper-
iments, we introduce three feedback loops to balance speed
and accuracy. In our benchmarks, we show the superiority of
our new approach over previous works on Bayesian robots.
Our approach of using change detection shows a more reliable
detection of environmental changes. This enables the swarm
to successfully classify even difficult environments (i.e., hard to
detect differences between the binary features), while achieving
faster and more accurate results in simpler environments.

I. INTRODUCTION

Solving complex problems with many rather simple robots
is a key idea of swarm robotics [1]. A typical challenge
in swarm robotics is to conceptually connect the robot
controller operating on the microscopic level of local per-
ception and neighbor-to-neighbor communication with the
requirements for the whole swarm on the macroscopic level.
Collective decision-making (CDM) is an important skill that
helps to establish a micro-macro-link and enables the swarm
as a whole to act autonomously [2]. Here, we focus on the
specific challenge making collective decisions in dynamic
environments. In the real world a robot’s environment is
never completely static. Changes constantly happen all the
time in a robot’s surroundings (e.g., light conditions), due to
other robots being around, or due to the robot’s own actions.
This type of adaptivity in swarm robotics is becoming
an increasingly important field of study in CDM, pushing
previous approaches to new limits.

In a previous simulation study, we investigated collective
decision making (CDM) of so-called ‘Bayesian robots’ in
dynamic environments with spatially distributed binary fea-
tures [3]. We enabled the static ‘Bayes Bots’ by Ebert et
al. [4] to change their initial decision. For this purpose, the
Bayesian robots were equipped with a threshold that triggers
the resetting of the robots’ belief state. With a robot swarm

1KP is at the Institute of Computer Engineering, University
of Luebeck, Germany; 2HH is at the Department of Computer
and Information Science, University of Konstanz, Germany
heiko.hamann@uni-konstanz.de

capable of responding to changes in the environment at our
hands, we also studied the major challenge of collective
decision-making: the speed-vs-accuracy tradeoff. We showed
that a conservative swarm quickly finds a consensus but
lacks ability to adapt to changes, especially rapid changes.
A progressive swarm instead is quickly able to react to such
changes but has difficulties in reaching consensus within
the swarm. Noteworthy results for our Dynamic ‘Bayes
Bots’ (DBB) [3] were an increase of false positives (i.e.,
robots switching opinion without environmental change or
reversing their correct decision) and an overall decrease in
accuracy in environments that are particularly difficult.

Here, we try to further increase the capabilities of robot
swarms to collectively, quickly, and accurately adapt to
environmental changes. Our key concept is to apply methods
of statistical change detection in our distributed robot system.
Change detection is an established field in statistical analysis
of time series. The main contribution of this paper is the
selection of appropriate methods from change detection,
their adaptation to our strictly decentralized distributed robot
system, and the analysis in swarm simulations.

II. RELATED WORK

A. Collective Decision-making

CDM is essential in swarm robotics and has various areas
of application. It is the art of multiple robots forming a
consensus by aggregating local measurements and beliefs to
quickly gain an accurate global picture. Many aspects have
been addressed over the last decade, for example, multi-
feature environments [2], [5], the influence of malicious
agents [6], [7], the crucial speed-vs-accuracy tradeoff [4],
[3], and the exploration of options [8].

Most of the literature of CDM focuses on benchmarks,
such as nest-site selection (best-of-n) or collective classifica-
tion tasks in static environments [4], [9], [10]. A popular
benchmarking task is the so-called collective perception
scenario, an evaluation of a two-dimensional environment
consisting of black and white tiles. In this binary discrimi-
nation problem, the swarm must decide on which tile color
is dominant. Ebert et al. [4] investigated the unavoidable
tradeoff between speed and accuracy in such a binary
classification problem. A parameter sweep was performed
to analyze the best performing parameter constellations for
Bayesian robots within environments of varying difficulty.
Similar to the work of Bartashevich and Mostaghim [11],
Ebert et al. [4] showed the influence of spatial correlations
between observations (e.g., patches of black tiles). The robots
estimate the ratio of black and white tiles by a model-based



approach that forms a belief based on a beta distribution.
This allows the collective to form an accurate estimate of
whether the environment is mostly black or white without
any prior knowledge.

Another form of Bayesian hypothesis testing in binary
CDM is presented by Shan and Mostaghim [10]. The Dis-
tributed Bayesian Hypothesis Testing is not fully distributed.
After a distributed collection of samples by the individual
agents, the observations are merged in a centralized opinion
fusion process, self-organized by a chosen leader.

Prasetyo et al. [12] studied change by introducing dynamic
nest sites (nest site qualities can change abruptly). They
showed an improvement of the swarm’s adaptability with
a small number of stubborn agents that keep exploring their
initial opinion independently. The switch to another opinion
is probability-based and independent of the prior decision-
making process. A similar scenario was studied by Talamali
et al. [13]. The task difficulty is increased by changing the
number of available nest sites and their quality during the
trial. They studied the influence of a robot’s communication
range on the adaptability of the swarm. They show the
suprising result that decreasing the communication range can
favor the local distribution of information. A similar study by
Aust et al. [14] confirmed these findings and found a similar
effect concerning the frequency of measurements. Divband
Soorati et al. [15] studied dynamic environments. In binary
decision-making, evidence is simply counted by robots and
a reset mechanism removes outdated measurements.

As mentioned above, we implemented a reset mechanism
and three kinds of feedback to avoid consensus lock-ins and
improve the adaptability to dynamic environments [3]. This
previous method was the starting point for our work here.

B. Change Detection

The analysis for changes within time series is an important
and widely researched topic [16], [17]. Analysis of change is
important in many different fields, such as medical diagnosis
and stock market analysis. Change point detection (CPD)
aims at identifying abrupt changes in the statistical properties
of the data [16]. CPD is separated into two main scenarios:
online and offline. In offline CPD all data is available. Offline
techniques detect changes retrospectively and segment the
collected data [18]. In online CPD the goal is to detect the
change points in ‘real time’ requiring fast algorithms [19].
Methods of CPD can be clustered in three segments: super-
vised, unsupervised and semi-supervised [17].

Supervised approaches learn a model that maps input data
to predefined classes based on offline training data [20]. For
CPD these classes mostly define whether there is a change
point. There are supervised approaches for binary and multi-
class classifiers [16]. Classes that were not presented in the
training data cannot be distinguished [17].

Unsupervised methods come in a great variety and are
popular because they do not need specific prior training
on labeled data to classify changes [16]. The discovery of
patterns in unlabeled data is used to detect anomalies in
generative properties of the data [17]. The big advantage

of unsupervised methods is that they can be applied to many
different cases without the need of intensive prior training.

A general approach for unsupervised CPD is the eval-
uation of change points based on the likelihood-ratio of
two consecutive segments within the data. These methods
calculate either the probability density and density ratio
or the direct density ratio [21]. The direct density ratio is
used in approaches, such as the Kullback-Leibler Impor-
tance Estimation Procedure (KLIEP) [22], the Unconstrained
Least-Squares Importance Fitting (uLSIF) [23] and the Rel-
ative Unconstrained Least-Squares Importance Fitting (RuL-
SIF) [24]. Approaches that estimate the densities first are the
Cumulative Sum (CUSUM) [25] and Change Finder [26].

Other strategies are predictive and probability-based. They
use Gaussian processes [27] or Bayesian techniques [28] to
estimate change points. An online Bayesian approach is the
Bayesian Online Changepoint Detection (BOCPD) [28].

Semi-supervised techniques can be found in recent works
but are not widely used for change detection [17]. An
advantage over solely supervised methods is the possibility
of using a combination of unlabeled and labeled data.

C. Pruned Exact Linear Time (PELT)

Killick et al. [29] introduced Pruned Exact Linear Time
(PELT). It is a fast, accurate and unsupervised method for
CPD. PELT sets out to find the optimal number and location
of change points while maintaining linear computational
cost under specific conditions. Therefore, they extended the
Optimal Partitioning (OP) method by Jackson et al. [30]
with a pruning step that frees the dynamic program of non-
relevant change point locations in future computations. The
pruning operation reduces computational costs and maintains
the accuracy of the segmentation. In a preliminary method
selection (data not shown), we found that PELT outper-
formed methods, such as the Bayesian Online Changepoint
Detection [28] and Relative Unconstrained Least-Squares
Importance Fitting [21]. In our scenario, PELT is best in
terms of speed, accuracy, and robustness. Hence, we selected
PELT as our CPD method of choice.

III. SCENARIO AND SIMULATION

The overall task of the simulated collective is to solve
a typical binary best-of-n problem (n = 2). We investigate
the behavior of a robot swarm of size N = 100 in a
dynamic environment. The environment is defined as a two-
dimensional arena consisting of black and white tiles. The
ratio of black to white tiles inverts at halftime, setting a new
best option. This change forms the dynamic environment. In
Fig. 1a the simulated arena is shown. It is two dimensional
and represents a bordered area of 2.4 m × 2.4 m.

All of our experiments are simulated using the Kilosim
simulator [31]. The simulated robot platform is the Kilobot.
The lighting in the arena of the Kilosim is simulated by the
so-called light-pattern, which is a grid of ten by ten randomly
arranged black and white tiles. When the white tiles are in
the majority the environment is predominantly bright. The
difficulty of the scenario is defined by the fill ratio of black



(a) Simulated arena in the Kilosim
simulator. Previously published in our
own work [3].

(b) 0.9

(c) 0.7

(d) 0.6

(e) 0.55

(f) 0.1

(g) 0.3

(h) 0.4

(i) 0.45

Fig. 1: Simulated robot arena and tiling patterns (similar to
[4]). (a) Top view of robot arena with 10-by-10 black and
white tiling pattern; robots as circles with color-code: in favor
of white (blue), in favor of black (red), and uncommitted
(gray). (b, c, . . . , i) Randomly generated tilings for task
difficulties f ∈ {0.9, 0.7, 0.6, 0.55, 0.45, 0.4, 0.3, 0.1} (ratio
of white vs black tiles).

and white tiles in the arena. A fill ratio of 1.0 defines a
completely white environment and a fill ratio of 0.0 defines
a completely black one (fill ratio = 1-(black tiles/100)). The
closer the fill ratio is to 0.5 the harder it is for the collective
to distinguish which color is in the majority. To simulate
dynamic environments the light-pattern changes abruptly to
the opposite fill ratio (e.g., fill ratio of 0.9 changes to 0.1)
at the half-time of the trial duration.

The N = 100 simulated Kilobots are initially positioned
in a regular grid-pattern close to a uniform distribution. The
swarm has 5,000 seconds before the switch to the opposite
fill ratio and 5,000 seconds afterwards to classify each envi-
ronment, resulting in a total trial duration of 10,000 seconds.
For each scenario we do 20 independent runs. All trials start
with a dominantly white environment which then transitions
to a mostly black environment, as shown in Figs. 1 (b) to (i).

IV. APPROACH

The robots observe the environment continuously and
detect changes in the environment applying a sophisticated
change detection method. The fill ratio of the environment
is mapped by each robot as a belief based on its local
observations (i.e., evidence). Robots keep collecting evidence
while already making decisions. Based on our previous
work [3], our goal is to improve reaction times and accuracy
in dynamic environments. Using the sophisticated state-of-
the-art change detection method PELT we hope to reduce
false positives and false negatives (i.e., maximizing sensitiv-
ity and specificity). If a change is detected, robots initiate a
reset and restart collecting evidence (details below). A robot
is in either of 3 states: uncommitted, in favor of black, or
in favor of white. Initially robots are uncommitted. Later
they commit to whether there is a majority of black tiles or

(a) α = 2, β = 10 (b) α = 5, β = 5 (c) α = 10, β = 2

Fig. 2: Beta distributions for example parameter settings:
(a) majority of black tiles, (b) fifty/fifty, and (c) majority
of white tiles. Previously published in our own work [3].

white tiles. We test new feedback mechanisms adjusted to
applications of change detection.

Each robot commits to a decision once the robot reaches
a credible threshold of either 0.95 or 0.05 with its belief
(1 for white, 0 for black). A robot returns to uncommitted if
it detects a change or is convinced by neighbors. We monitor
a ‘swarm belief’ by summing all robot beliefs divided by
swarm size N . We define decision-making accuracy. If the
swarm belief reaches 1.0 in a mostly white environment,
we have perfect accuracy while beliefs of 0.5 or 0.0 are
failures. A swarm belief of ≥ 0.8 for predominantly white
environments is a satisfactory result (≤ 0.2 for black).

A. Distributed Bayesian Approach

The observational interval τ indicates the time during
which the robot collects samples. Increasing the observa-
tional interval leads to less collected samples during the run
but also to more accurate observations of the environment
due to spatial independence of the samples. The robots
have limited time to classify the environment before the
change and need a sufficient number of samples to do so. By
conducting a few test trials prior to the recorded experiments,
an observational interval set to τ = 20 seconds showed
promise of a good tradeoff. Within 20 seconds the robot can
cross up to around eight tiles in the arena when moving in
a straight line before collecting the next sample. The robot’s
belief of the fill ratio of black and white tiles is formed by
the lower cumulative distribution function (CDF) at 0.5 of
the Beta distribution. In Fig. 2 we give three examples of
how parameters α and β influence the distribution. Here, β
models the number of black tiles while α models white tiles.
Whether the environment is mostly black or white is decided
once a robot has observed enough samples of one color
and reaches a credible threshold pc. The Beta distribution
is continuously updated with the new color observations C.

B. Collective Decision-making with Change Point Detection

The combination of three feedback types with PELT
(see Sec. II-C) as sophisticated CPD forms our new
approach called Dynamic ‘Bayes Bots’ with sophisti-
cated Change Point Detection (DBBCPD). The following
pseudo-code (Alg. 1) gives our new approach of DB-
BCPD using PELT (Alg. 1, line 37). Using DBB [3] as
a basis to classify dynamic environments, the new ap-
proach uses a Bayesian swarm that can revise its de-
cision. The robots start observing and moving around
in the environment by means of a random walk.



Algorithm 1 Dynamic ‘Bayes Bots’ with CPD

Input: Observational interval τ , credible threshold pc, prior
parameter α0, neighbor thresholds n1, n2 and n3

Output: Decision df and belief q of all robots at time t
1: Init counter of white/black observ. α← α0, β ← α0

2: Init incomplete decision df ← −1
3: Init reset flag/reset counter dres ← 0, r ← 0
4: Init dictionary of observations sobs = []
5: Init dictionary of received reset sres = []
6: Init dictionary of received recruitment srecruit = []
7: Init dictionary of received transformation strans = []
8: for t ∈[1, T] do
9: Perform pseudo-random walk

10: Let m = (id′, r′, d′res, d
′
f , α

′, β′)▷ msg. of neighb.
11: if d′res = 1 and df ̸= −1

and r ≤ r′ and id’ not in sres then
12: if n1 ≥ neighbors with active reset flag then
13: → accept reset
14: (dres ← 1)
15: if d′f ̸= −1 and df = −1 and r ≤ r′ and id’ not in

srecruit then
16: if n2 ≥ neighbors with certain decision then
17: →get recruited to the

decision
18: (df ← d′f , α← α′, β ← β′, r ← r′)

19: if d′f ̸= −1 and df ̸= −1 and id’ not in strans then
20: if n3 ≥ neighbors for opposite decision then
21: →get transformed by decision
22: (df ← d′f , α← α′, β ← β′, r ← r′)

23: if dres ̸= 0 then
24: Reset: dres, df , α, β, sobs, sres, srecruit and strans
25: r ← r + 1

26: if observe τ then
27: C ← observed color (0,1)
28: α← α+ C
29: β ← β + (1− C)
30: sobs ← C
31: q ←

∫ 0.5

0
Beta(α, β) ▷ lower CDF at 0.5

32: if df = − 1 then
33: if q > pc then
34: df ← 0
35: else if (1− q) > pc then
36: df ← 1

37: dres ← PELT(sobs)
38: BROADCAST MESSAGE(id, r, df , α, β)

The random walk is based on Ebert et al. [4] and consists of
a straight segment followed by a turn. The duration of the
straight segment is drawn from an exponential distribution
with a mean of 240 seconds. The turn is determined by
drawing from a uniform distribution between 0 and 2 π.
During their random walk the robots start communicating
with close neighbors. They exchange their ID and current
robot parameters within a metric neighborhood of up to seven
centimeters. Three types of feedback aid in improving the

swarm’s adaptability to dynamic environments.
a) Reset feedback (lines 11-14, Alg. 1): This feedback

allows robots to propagate resets for a distinct time period
in the event of a change. A robot needs to receive an active
reset flag from more than n1=3 individual neighbors before
commencing with the reset procedure. Only robots that have
already made a decision and have a lower reset counter than
their neighbor can be affected by this feedback type.

b) Recruitment feedback (lines 15-18): An undecided
agent can be recruited for a distinct decision if it meets more
than n2 = 5 individual neighbors with the following criteria
within a set time interval: having higher reset counters and
having made that distinct decision. The feedback works
based on the majority rule. Agents with an opposite decision
lower the counter of met neighbors. Therefore, a majority of
n2 = 5 neighbors must be reached in order for the recruit-
ment to take effect. This feedback positively influences the
convergence speed within the swarm but naturally increases
the number of false positives in hard environments.

c) Transformation feedback (lines 19-22): This feed-
back affects only agents that are already committed to a
belief. It is similar to the recruitment feedback, however,
only addresses robots with opposite beliefs. Committed
robots keep monitoring whether they encounter more than
n3 = 10 individual neighbors with the opposite decision in
a time interval. For this feedback to take effect, a higher
number of neighbors is required to verify the transformation
request compared to the recruitment feedback. The counter
is based on the majority rule (cf. feedback b).

In line 37 the robot verifies its decision by calling PELT
(see Sec. II-C) using a Python package1 with observation
dictionary sobs (i.e., a time series of all observations C over
a time window from the last reset) whether its reset flag
must be set. sobs is analyzed for a change point by PELT
and if found, the reset flag dres is set. When the robot
detects a change, it increases its reset counter r (line 25).
The robot resets itself to the initial state and starts observing
the environment anew (line 24). With the reset counter r
we ensure that robots only influence neighbors smaller reset
counters. At the end of the algorithm the robot begins
broadcasting its updated robot parameters.

V. RESULTS

We compare this new approach with our previous con-
tribution DBB [3]. To benchmark DBB and DBBCPD, the
swarm belief of each method is monitored in different
dynamic environments of varying difficulties. In the easy
environment, DBB is quickly able to form a consensus in
the first 750 seconds. We can observe that the median swarm
belief settles at 0.99 (see Fig. 3a). This indicates the active
sample limit plim = 0.99 which bounds the belief of each
agent upward at 0.99 and downward at 0.01. Similarly in
the second half, the swarm does not exceed a median swarm
belief of 0.01. Considering the restriction by plim, DBB
correctly classifies the environment in both halves. DBBCPD

1https://github.com/ritchie46/fastpelt

https://github.com/ritchie46/fastpelt


(a) DBB, env. 0.9→0.1 (b) DBBCPD, env. 0.9→0.1

(c) DBB, env. 0.7→0.3 (d) DBBCPD, env. 0.7→0.3

Fig. 3: Comparison of DBB and DBBCPD in environments
of easy (a, b) and medium (c, d) difficulty (n = 20 runs).

achieves a significantly better classification in both halves
(see Fig. 3b, Wilcoxon rank sum test for n = 20 swarm
beliefs each at t = 4, 990 and t = 104, p < 10−6). DBBCPD
switches about 500 seconds faster than DBB.

Environments with medium difficulty show visible de-
viations. In the first half, we notice that DBB correctly
classifies the environment and reaches a median swarm belief
of 0.94 after 1,750 seconds (see Fig. 3c). However, the
swarm oscillates between a median swarm belief of 0.83
and 0.9 until the environment changes. In the second half,
variance decreases. DBB decides accurately and achieves a
median swarm belief of 0.03. DBBCPD copes significantly
better in the medium environment (see Fig. 3d, p < 0.001).
We recognize its robustness, visible by low variance. In the
first half, DBBCPD outperforms DBB and reaches a median
swarm belief of 0.99. In the second half, DBBCPD reaches
a correct median swarm belief. The decision change is
faster after the environmental switch with DBBCPD. While
DBB approximately needs 1,500 seconds to sink under 0.2,
DBBCPD reaches this value after only 1,250 seconds.

We find clear differences between the two methods for
the hard environment. Although DBB still classifies the
environment correctly in both halves, the swarm only reaches
a mean swarm belief of 0.8 in the first half (see Fig. 4a).
Swarm belief collapses repeatedly before the change (in-
dicating many falsely resetting agents). DBB takes more
time to form the new decision after the environment change
and reaches a mean swarm belief of 0.08. In comparison,
DBBCPD achieves a significantly better median swarm belief
of 0.93 in the first half of the hard environment (p < 10−9),
correctly classifying the predominantly white environment
(see Fig. 4b). The swarm converges after 1,750 seconds.
DBBCPD shows similar performance in the second half, a
median swarm belief of 0.07 (not significant, p = 0.2). The
stagnation of the swarm beliefs is caused by the limitations

(a) DBB, env. 0.6→0.4 (b) DBBCPD, env. 0.6→0.4

(c) DBB, env. 0.55→0.45 (d) DBBCPD, env. 0.55→0.45

Fig. 4: Comparison of DBB and DBBCPD in environments
of hard (a, b) and very hard (c, d) difficulty (n = 20 runs).

of the environmental difficulty. There is a constant deviation
of about 0.07 from a perfect classification.

The very hard environment pushes DBB to its limits. The
accuracy is not satisfactory (see Fig. 4c). The swarm merely
achieves a maximum median swarm belief of 0.64 after
1750 seconds and in the end 0.2. DBBCPD reaches a
significantly better median swarm belief of 0.78 in the first
half of the very hard environment (see Fig. 4d, p < 10−6).
Note the belief outliers of values between 0.2 and 0.5. These
may indicate that the increased change detection capabilities
of DBBCPD may also be misleading sometimes. However, to
test for generalization, we did not optimize hyperparameters
of PELT for our specific scenario. In the second half, it
improves its median swarm belief to 0.19, 3,500 seconds
after the environment change (not significant, p = 0.4).
The swarm belief stagnates at 0.78 and 0.22 in both halves.
Compared to the hard environment, the limitation due to
environmental difficulty has increased by 0.15.

DBBCPD is superior to DBB. DBB reaches a much lower
maximum accuracy before the change. However, this low
accuracy makes it initially more receptive for change. It is
necessary to consider the speed in relation to a swarm’s max-
imum achieved accuracy. DBBCPD’s superiority is indicated
by an at least equal speed and a higher overall swarm belief
(compare Fig. 3a and Fig. 3b). DBBCPD has an advantage
over DBB due to its reliable CPD in terms of accuracy. It is
more robust and performs a more accurate classification of
its surrounding by reducing most of the false positives.

VI. CONCLUSION

We presented a new Bayesian approach containing a
sophisticated change detection called DBBCPD that is based
on our previous work DBB [3]. Each robot executes a
sophisticated, state-of-the-art change detection algorithm to
analyze its local evidence. The CPD method PELT shows



good results. Its accuracy is sufficient to detect changes in
hard to very hard environments. An advantage of accurate
change detection is a faster and more robust consensus
formation due to fewer incorrect resets before the change.

The comparison of our approach DBBCPD to our previous
DBB shows a clear superiority of DBBCPD. In the hard and
very hard environments DBBCPD outperforms DBB. Since
DBBCPD is more accurate and faster than DBB, this is a
fundamental improvement of the speed-vs-accuracy tradeoff.

The maximally achievable swarm belief decreases as ex-
pected with increasing task difficulty. There is an equilibrium
between resetting and committing agents that can only be
influenced by adaptability. The speed-vs-accuracy tradeoff
requires balancing between conservatively resetting and com-
mitting agents and allowing for faster adaptation.

We show that DBBCPD is able to classify hard and very
hard dynamic environments even without scenario specific
optimization. The algorithm can be adapted to any scenario.
For more results see the digital appendix.1

In future work, we plan to study the limits of swarm beliefs
for increasing task difficulty and its connection to the speed-
vs-accuracy tradeoff. This also requires to analyze the micro-
scopic decision-making of robots that might be inhibited by
contradicting local evidence. This could also help to know
the actual theoretical limitations in this benchmark scenario.

Another interesting topic is to further investigate DBBCPD
in more difficult and more realistic dynamic environments.
Partial change or smooth transitions could help to study DB-
BCPD’s performance and would push towards applications.
The reliability of DBBCPD could be tested with Byzantine
Robots (agents intentionally trying to sabotage the swarm).

The next step is to apply DBBCPD to a swarm of real
Kilobots. This requires to analyze the computational costs.
We use a Python package that could not be run on Kilobot
but bigger robots. Here, the software for PELT needs around
82 KB of memory to process a change detection on 600 data
points, far more than what a Kilobot can do. Slimmer
implementations seem possible but need to be studied.

REFERENCES

[1] H. Hamann, Swarm Robotics: A Formal Approach. Springer, 2018.
[2] G. Valentini, E. Ferrante, and M. Dorigo, “The best-of-n problem in

robot swarms: Formalization, state of the art, and novel perspectives,”
Frontiers in Robotics and AI, vol. 4, p. 9, 2017.

[3] K. Pfister and H. Hamann, “Collective decision-making with bayesian
robots in dynamic environments,” in 2022 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 7245–7250.

[4] J. T. Ebert, M. Gauci, F. Mallmann-Trenn, and R. Nagpal, “Bayes Bots:
Collective Bayesian decision-making in decentralized robot swarms,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 7186–7192.

[5] Q. Shan, A. Heck, and S. Mostaghim, “Discrete collective estimation
in swarm robotics with ranked voting systems,” in 2021 IEEE Symp.
Series on Computational Intelligence (SSCI). IEEE, 2021, pp. 1–8.

[6] V. Strobel, E. Castelló Ferrer, and M. Dorigo, “Blockchain technology
secures robot swarms: A comparison of consensus protocols and their
resilience to Byzantine robots,” Front. in Robotics and AI, vol. 7, 2020.

[7] G. Primiero, E. Tuci, J. Tagliabue, and E. Ferrante, “Swarm attack:
A self-organized model to recover from malicious communication
manipulation in a swarm of simple simulated agents,” in International
Conference on Swarm Intelligence. Springer, 2018, pp. 213–224.

1digital appendix: https://doi.org/10.5281/zenodo.7682100

[8] M. Raoufi, H. Hamann, and P. Romanczuk, “Speed-vs-accuracy trade-
off in collective estimation: An adaptive exploration-exploitation case,”
in 2021 International Symposium on Multi-Robot and Multi-Agent
Systems (MRS), 2021, pp. 47–55.

[9] G. Valentini, E. Ferrante, H. Hamann, and M. Dorigo, “Collective
decision with 100 Kilobots: Speed vs accuracy in binary discrimination
problems,” Journal of Autonomous Agents and Multi-Agent Systems,
vol. 30, no. 3, pp. 553–580, 2016.

[10] Q. Shan and S. Mostaghim, “Collective decision making in swarm
robotics with distributed Bayesian hypothesis testing,” in International
Conference on Swarm Intelligence. Springer, 2020, pp. 55–67.

[11] P. Bartashevich and S. Mostaghim, “Multi-featured collective per-
ception with evidence theory: tackling spatial correlations,” Swarm
Intelligence, vol. 15, pp. 83–110, 2021.

[12] J. Prasetyo, G. De Masi, and E. Ferrante, “Collective decision making
in dynamic environments,” Swarm intelligence, vol. 13, no. 3, pp.
217–243, 2019.

[13] M. S. Talamali, A. Saha, J. A. R. Marshall, and A. Reina, “When
less is more: Robot swarms adapt better to changes with constrained
communication,” Science Robotics, vol. 6, no. 56, p. eabf1416, 2021.

[14] T. Aust, M. S. Talamali, M. Dorigo, H. Hamann, and A. Reina, “The
hidden benefits of limited communication and slow sensing in col-
lective monitoring of dynamic environments,” in Swarm Intelligence,
Cham, 2022, pp. 234–247.

[15] M. Divband Soorati, M. Krome, M. Mora-Mendoza, J. Ghofrani,
and H. Hamann, “Plasticity in collective decision-making for robots:
Creating global reference frames, detecting dynamic environments,
and preventing lock-ins,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019, pp. 4100–4105.

[16] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time
series change point detection,” Knowledge and information systems,
vol. 51, no. 2, pp. 339–367, 2017.

[17] B. Namoano, A. Starr, C. Emmanouilidis, and R. C. Cristobal,
“Online change detection techniques in time series: An overview,”
in 2019 IEEE International Conference on Prognostics and Health
Management (ICPHM). IEEE, 2019, pp. 1–10.

[18] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline
change point detection methods,” Signal Processing, vol. 167, p.
107299, 2020.

[19] A. B. Downey, “A novel changepoint detection algorithm,”
arXiv preprint arXiv:0812.1237, 2008. [Online]. Available: https:
//doi.org/10.48550/arXiv.0812.1237

[20] D. J. Cook and N. C. Krishnan, Activity learning: discovering,
recognizing, and predicting human behavior from sensor data. John
Wiley & Sons, 2015.

[21] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point
detection in time-series data by relative density-ratio estimation,”
Neural Networks, vol. 43, pp. 72–83, 2013.

[22] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau,
and M. Kawanabe, “Direct importance estimation for covariate shift
adaptation,” Annals of the Institute of Statistical Mathematics, vol. 60,
no. 4, pp. 699–746, 2008.

[23] T. Kanamori, S. Hido, and M. Sugiyama, “A least-squares approach
to direct importance estimation,” The Journal of Machine Learning
Research, vol. 10, pp. 1391–1445, 2009.

[24] M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama,
“Relative density-ratio estimation for robust distribution comparison,”
Advances in neural information processing systems, vol. 24, 2011.

[25] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1/2, pp. 100–115, 1954.

[26] K. Yamanishi and J.-i. Takeuchi, “A unifying framework for detecting
outliers and change points from non-stationary time series data,” in
ACM SIGKDD on Knowl. discov. & data mining, 2002, pp. 676–681.

[27] Y. Saatçi, R. D. Turner, and C. E. Rasmussen, “Gaussian process
change point models,” in ICML, 2010.

[28] R. P. Adams and D. J. MacKay, “Bayesian online changepoint
detection,” arXiv preprint arXiv:0710.3742, 2007. [Online]. Available:
https://doi.org/10.48550/arXiv.0710.3742

[29] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of
changepoints with a linear computational cost,” Journal of the Amer-
ican Statistical Association, vol. 107, no. 500, pp. 1590–1598, 2012.

[30] B. Jackson et al., “An algorithm for optimal partitioning of data on
an interval,” IEEE Signal Proc. Letters, vol. 12, pp. 105–108, 2005.

[31] J. Ebert and R. Barnes, “Kilosim,” Mar. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3406865

https://doi.org/10.5281/zenodo.7682100
https://doi.org/10.48550/arXiv.0812.1237
https://doi.org/10.48550/arXiv.0812.1237
https://doi.org/10.48550/arXiv.0710.3742
https://doi.org/10.5281/zenodo.3406865

	Introduction
	Related Work
	Collective Decision-making
	Change Detection
	Pruned Exact Linear Time (PELT)

	Scenario and Simulation
	Approach
	Distributed Bayesian Approach
	Collective Decision-making with Change Point Detection

	Results
	Conclusion
	References

